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The natural numbers 1,2, 3,4, ... n, ... have been with each one of us since childhood.
Almost all the important properties of this number set, which we shall call N, have
d by us intuitively from exp These properties may be listed now

been
as follows. We add a few comments where necessary.

1. The set N is an endless set. That is, there is no last number. The sequence of
natural numbers goes on and on.

There is a built-in order in the set in the way we write it:
B 55 0 S Oy R
If b appears later in the sequence than a then b is said to be greater than a. We
write this: b > a; or, what is the same thing, @ < b, i.e., a is less than b.
Every number has a successor number and, except for 1, every number has a

N

w

predecessor number.
Any two numbers in the set can be *added” to produce another number in the set.

Recall that after one learns to count, the next thing that is learnt is to *add’.
Whether one adds a to b or b to a it is the same thing—in the sense the result is
the same. In other words, addition ‘+' is a commutative process; i.e.,
a+b=b+a foralla,be N )
. Repeated addition of the same number to itself is known as ‘multiplication’.
Thus, for instance, 4 added to itself 5 times is nothing but 4 x 5, that is, 20.

=

B

o

7. This iplication is also . That is,
axb=bxa foralla,be N )
8. Both the operations, addition and multipli ion, have another property, called
‘associativity'. This means : @ + b added to ¢ and a added to b + c are both the
same. Symbolically,
@+by+c=a+(b+c) foralla,bceN 3)
In the same way, we have, for multiplication,
(axbyxc=ax(bxc) forallabceN @)
o, Further, there is a ibility’ b the two p dd * and
‘multiplication’; namely,
ax(b+c)=(@xb)+@xc) * ¥
foralla,b,ce N )

and (@a+byxc=(axc)+(bxc)



2 e e
distributivity’ of multiplication with respect to addition.
ow be assumed without any further
f the set N shall o il by
J ivati rties thereof. We do not have either the
scratc] the derivation of these prope! g
s rﬁ:‘mm; the necessity of logic to get into all that now, at this Ie-vel.‘
o first things that we learn as we grow learning mathematics is that the
o l?lf ?euuml mn:ben has several deficiencies. For instance, we can solve fo_r X
sysmnm:n.r; 4+ x =23 within the system N. The answer is x= 1. Wherc:_ss, an equat?on
:: 8; +x= 2 is not solvable in N. In other words, there isno value of x in N satisfying
3 : =2 ;Je Kknow the answer is - 1 but =1 is not a natural number. :Thus .rhc sys(Fm
N ofx n:nml numbers does not have solutions of the equation a +x= bi.e., this f"qufmon
has no solution for x in N unless a < b. evelop by ning itself
with such questions and resolving the issue. In the above situation, the resolution comes
like this. Mathematics invents new numbers, namely, 0,— 1, -2, =3, ... e_xpressly ©
satisfy the need to solve the equations @ + x = b even when a 2 b. For instance, if
a = b, the equation is a + x = a. We invent the new number “0" (= zero) 1o be the
solution of

This property is called
These nine properties Of !
justification. H;’;:er mathematics may require the

a+x=a=x+a.
Once we include a new number “0" to the system N we want also to solve equations
like
1+x=0;2+x=0;3+x=0;...
The solutions of these are called the negatives of 1,2, 3, ... and are written
-1,-2,-3,...
Thus the enlarged system now contains zero and all the negative integers and N. This
new system is denoted by Z and is called the set of all integers. Thus
2=(0,1,-1,2,-2,3,-3,..}.
It can also be written as below, where we bring out the ‘order’ relation in Z. In other
words, in the following style of listing the elements of Z, if a precedes b then a < b, or
what is the same thing, b > a.
Z={.,-3,-2,-10123,..}
There are several points we have to note about this of Nto Z. In enl
NtoZ we have been able to ‘protect” or ‘preserve’ as many properties of N as possible.
Precisely we mean the following:

1. Z s an infinite (= endless) sequence as N was (and is !).

2. The built-in order in N is still preserved. It has in fact been extended to Z. In
other words ‘a > b” has a meaning in Z for every a and b in Z and further, if
a>bin N for two elements a, b € N, it is so in Z, even as elements of Z.

3. Every number in Z has a successor and a predecessor. Recall that in N the number
1 does not have a predecessor. Also any number in N whether considered as
member in N or a member in Z has the same successor. Similarly, any
number # 1 in N has the same predecessor in N or Z. We express this by saying

that the ‘successor-predecessor’ ¢oncept has been extended to Z without damage
to the concept already existing in N.

4.

w

o

The operation of addition already available in N carries over to Z. If x =-a
wherea € N, y=—b where b € N, we may define x + y
=~ (a +b) where + in the R.H.S. is the addition in N. Since (a + b) € N,
— (a +b) € Z. Thus we get the familiar equality.

(-a)+(-b)=-(a+b)
Again, if x=—-a,a € N, is ‘added’ to c € N we will have x + ¢ = (- @) + ¢. This
is to be taken as

-(a-c)ifa>c

and as c-aifc>aorc=a.
Proceeding in this way and carefully going through every new situation we geta
thorough definition of addition in Z. We see that ‘addition’ is closed in Z — by
which, we mean, two numbers in Z always lead to a number in Z by the addition
process. If two numbers are already in N their sum is what it is in the system N.
Thus the extension of N and the addition therein to Z has been achieved without
‘damaging’ the addition in N. This process of enlarging a number system,
preserving its algebrai is called an of the system. Addition
of zero to any number, again satisfies,

a+0=a=0+a forallae Z.
Addition in Z i to be . In other words,

a+b=b+a foralla,be Z 1)
Multiplication in N can be dedtoa ipli in Z, without

the meaning of multiplication in N — except that, we have to make proper rules
for handling the negative sign, thus: If a, b € N, then
axb=ab (as in N)
(—a)x(-b)=ab
(-a) x (b) =~ (ab)
ax(-b)=-(ab).
Multiplication by zero however has to be controlled by a new rule, viz.,

ax0=0=0xa forallae Z.
Multiplication in Z is ive. In other words,
axb=bxaforalla, be Z. 2)

. The associative properties of both addition and multiplication continue to be

valid in Z. In other words

a+b+c)y=(a+b)+c foralla,b,ce Z’ 3)
and  ax(bxc)=(axb)yxc foralla,b,ce Z. @)
. The distributive property
a(b+c)=ab +ac
(a+ b)c =ac+bc foralla,b,ce Z 5

holds, as it holds in N.

. Finally, we record, at one place, the special roles of the numbers 0 and 1 in Z as

follows:
(i) In Z, 0 is the unique number which has the property:

O+a=a=a+0 forallae Z (6")
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(i) Tn Z, 1 is the unique number which has the property:
Ixa=a=axl forallae Z 7
Note that this property (if) of 1 is alrcady present in N forall @ € N and it is now valiq
foralla e Z,as well.

While the number ‘zero’ plays a unique role as far as addition is an?cn'Eed inz,
the number ‘one’ plays an exactly analogous role with respect to ‘mulluphc.auon inZ,
We call ‘0’ the additive identity in Z and call ‘1" the multiplicative identity in Z,

1f we now compare the two systems N and Z we find that Z is a meaningful extension

.of N. The ion protects the properties already existing in N as listed above. Further,
Z has the extra property of solvability of equations of the form
a+x=b,abe L ®)

Abeauty of the extension from N to Z is the following. We invented new numbers
to solve a + x = b with a, b, in N; but in the enlarged set Z we are able to solve a + x =
bforanytwoa,binZ!

But there is one property, viz., the following, which is true in N but is not true in Z:

1f a> b, for any three a, b, x € N, then xa > xb 9
‘In other words, so long as we are in N, multiplication by the same number of both
sides of an inequality preserves the same inequality. But in Z this property will fail for
multipﬁcalion by a negative quantity. For instance, if @ < b in Z then —a > b,
Multiplication by a negative integer reverses the inequality.

Thus in carrying out the extension of the number system from N to the larger system
Z, we could preserve many properties, we were able to solve extra equations but we

had to lose something, as if we had to pay a price for the extension !

‘We are now going to crry this extension process through three more stages. Each
time we will have the general situation (not unlike the above extension from N to Z)
between the smaller and the larger systems.

(1) We preserve most of the properties of the smaller system;

(2) We achieve something extra in the larger system — something which was not

available in the smaller system: and

(3) We ‘pay a price’ for this extension by losing some property which was present in

the smaller system.

In this series of extensions there is an enormous amount of detail to be taken care of
for the purpose of ical rigour and pletion of the arg| . We shall not
go through all that detail. They will be duly taken up at the level of university education.
Here we shall only indicate the lines of these extensions in a broad manner. The extension
that we have just completed namely,

- fromNtoZ
may be called the first stage. The second stage of the extensions is

fromZto Q
where Q is the set of all rational numbers. A rational number is a number of the form

2 p.jeZ withq#0. (10)
q

Most often, for printing convenience, we write % as plq.

This extension is needed for solving equations of the form

ax=b,a,be Z. an
For instance, we cannot solve in Z the equation
2x=1 or 3x=-2. *)

We know from our knowledge of lower class arithmetic that x = 1/2 is the solution
of 2x=1and x = (- 2)/3 is the solution of 3x = - 2. But these numbers 1/2, (- 2)/3 etc.
are not in Z. In other words, neither of the equations in (*) is solvable in Z. In fact (11)
does not have a solution in Z whenever a is not a factor (= divisor) of b. Therefore we
create numbers like 1/2, (- 2)/3 ... as solutions for 2x = 1, 3x = -2, ... . In general, we
create the rational numbers (10). But once we create them we have to merge them in
the additive and multiplicative structures already existing in Z.

First we define the equality of two rational numbers as follows.

Definition 1. Two rational numbers % and % are equal if ad = bc. We also agree to

. n .
write every n € ZuTmQ.

< A 4

Note. We now have the reason for writing i % In fact, always % = 55 where p is any
P

nonzero integer. Also 5 .5; because (- 5) x (- 9) =45 = 5 x 9. So hereafter we can safely

assume that the d of rational are positive.

Now we define, thereby ensuring that the sum and product of two rational numbers is
again a rational number,

8., ad + be (12)
b d bd
a e ac
and ry J=E (13)

Itis an interesting routine to verify the following:
(i) The addition and multiplication defined in (12) and (13) are both meaningful
T L R . T TN SO )
R T s
(if) Addition and multiplication in Q are both i
(1ii) The distributive property (5') holds in Q as well
(iv) Foralla e Q,

a+0=a=0+a

as well as

Ixa=a=ax]l.

All these properties are thus present both in the smaller system Z and in the larger
system Q. An additional property that is present in Q, but not in Z is the solvability of
equations of the form

ax=b,a,be Q and a#0 (14)
The corresponding equation (11) is not always solvable in Z. But (14) is always solvable
in Q. This is the advantage of the extension from Z to Q. But there is a ‘price’ that we

pay for this extension. Let us describe it now. If we write the numbers of Z in their
natural order, namely,



(w-4-3,-2,-1,0,1,2,3,4,..] N

there is a ‘next greater’ number. But this fails in @

b t:a(;f(:ere: T;y n:lt:‘el:rgmler‘ number. We shall explain what Uus' means,
becl:i'l‘: c:f all note that there is a natural order in the system Q. It is an extension of the

natural order in Z.
c

a N . .dinZ and 3
Definition 2. For any two numbers > and Zin Quwitha,b,c.dinZand b, d>q,
%> % if and only if ad > be as
b

mmdon%>-;-,because2x9=l8>ls=3x5
-—7<——;-.because(—7)x3=—21<-20=(-4)x5

Now let us obsserve what it means to say that there is no next greater number in Q,

Consider any two rational numbers x and y with x <y. Then we have x= % + % < % +§

= x;y<%+%=y. Thus, whenever x <y € Q we have X;"' € Q such that

x4y

x< <y.

This says that between any two rational numbers x and y, there is a rational number
and hence an infinity of rational numbers are there between x and y.

In N as well as in Z this concept of ‘next greater’ number is valid whereas in Q itis
not. This is the price we pay for the extra advantage we achieve in extending to Q, viz.,
the solvability of the equations of the form (14).

Now we shall proceed to the third stage of this series of extensions. This stage is
‘from Q to R* where R is the set of all real numbers. To explain what R is precisely,
we have to take several steps. We shall not, in this book, be able to mathematically
Justify all these steps. First note, the necessity for the extension arises as follows.
Suppose a is a positive rational number (i.e., a € Q. a > 0) but not a perfect square.
Then there is no rational number x such that x° = a. For instance x* = 2 has no solution
for x € Q. One might say what about x = + V2? But what exactly is V2? We prove
below, in Theorem 1, that such a number V2, if it exists, cannot be in Q. This is the
reason for looking beyond Q, and obtaining an extension of Q. In fact, by one stroke
ofan ion from Q to R, ics solves not only the problem of solutions for
#% =2 but also x* = 3 and many other such equations which are not solvable in Q. But

first let us take up the promised theorem.
Theorem 1. There is no rational number x such that 22 = 2.

The proof is based on divisibility by 2. Recall that a natural number m is even iff
m = 2p for some natural number p and m is odd iff m = 2g - | for some natural number
4- Each natural number is either odd or even but not both; for, if 2p = 2¢ ~ | then
2(q-p) =1.This is impossible because g - p is an integer. We also note that the square
of an even number is even, since

(2py =4p? =2 x 2p?
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and the square of an odd number is odd, since
g~ 17 =4¢*-4g+1
=202¢4*-2g+1)-1.

Now suppose there is a rational number x = m/n whose square is 2. We may suppose
that m and n are natural numbers such that they do not have a common factor, otherwise
we may cancel the common factor and reduce the fraction. So in particular m and n
cannot both be even. Since 1%'= (m/n)? = 2 we have m* = 2n2. This means m? is even
and so m is even i.e., m = 2p for some p € N. Then m? = 4p?; therefore 4p? = 2n%, s0
that 2p* = n?. This means n? is even and so  is also even. Thus both m and n are even,
contradicting our assumption on m and n. This proves the theorem. Q

Let us continue our description of the extension from Q to R. A number like V2
which is not a rational number is called an irrational number. Thus V2, V3, V5, V6, ...
are all irrational numbers. A rational number is expressible as either-a ter
decimal or a decimal with a recurring portion. On the other hand an irrational number
when expressed as a decimal is neither terminating nor recurrent. These are deep
statements which can be proved only with the tools of Higher Mathematics. It is therefore
impossible to express irrati bers — even such apparently simple ones as V2,
V3 ete. — precisely in terms of terminating decimals or deci with ing parts.
One can only approximate their actual value as closely as desired, by means of rational
numbers.

Further it is not easy to perform the operations of addition and multiplication with
irrational numbers. Of course we have been taught, for example, that

V2xV3=V6

and we shall certainly be using such relations all the time. But the proofs of these
statements need precise definitions of irrational numbers. These precise definitions
were given first by Dedekind in the 19th century. Just to give a broad picture of what
his methods are, the definition of V2 goes as follows. Divide all the rational numbers
(i.e., the elements of Q) into two classes: the lower class L, and the upper class U. The
lower class consists of all negative rationals and also those non-negative rationals
whose squares are less than 2. The upper class consists of all those non-negative rationals
whose squares are greater than 2. Both the classes are non-empty; because 1 € L and
2 € U. Further their intersection is empty. Also every number in L is less than every
number in U. Soif we represent all the numbers on a geometric line, the above division
of all rational numbers would be represented somewhat as follows:

Y.
- + - 4 } I |
3 | /\ 2

3

Fig. 1.1

Thus there is a gap between L and U. This gap was defined by Dedekind as the
irrational number V2. The most proper way of establishing these results is to £0 with
Dedekind and define irrational numbers by such ‘cuts’ of the geometric line. Dedekind
not only defined them but also enunciated methods of addition and multiplication of



: i R of all rational bers and irrationa]
:Tu:lt:r‘sl m:u ;:Iv::n:::rln‘s?:m of Q. The real num_be( system R is thus the
geometric line, which is continuous and without £2aps. This is x'he major advantage
over the smaller system Q. The continuity of the real line (as itis called) mea:’s. that
every point on the line represents a real number and every real number has a positiona]

representation on the line.
But again there is a *price’ for this ion. The "fgca" be
in the following sense. The whole set of rational numbers can be put into one-one
correspondence with N that is, with
(1,2, 3y i Byicai) .
This property is called ‘countability’. But this fails in R. The fact that Qis countable
whereas R is not is a major result which will form one of ll}e mfercmng, foundationa]
results in Advanced Mathematics. It is enough to say at this point that R has so many
“numbers in it that even n repetitions of Q (however large the number 7 may be) would
“ still not come up in terms of size, to the number of elements of R. We say R is
“‘uncountable”. ) .

Now we come to the fourth (and last) stage of this series of extensions. Itis from R
to C where C is the set of all complex numbers x +iy, X,y € R. Here i is the so-called
‘imaginary’ square root of 1. Note that one of the major deficiencies of R is that,
within R we cannot solve several algebraic equations, the simplest of them being

2+1=0.

Thereisnoxe R which is a solution of this equation, because x* =~ 1 is an impossible
relation for any x € R; since the square of any real number is non-negative. So we
invent a new number called i such that i = - 1. Itis called ‘imaginary’ because itis not
in the real number system and so it is not real!

There is nothing ‘imaginary’ about it in the English sense of the word. It has as
much of an existence in the mind as any other number in mathematics. The number
“2" for example is itself only a mental construct. There are two apples. two fingers,
etc. in the concrete visual world, there are symbols for *2” which can be written and
seen, but the number ‘2’ by itself is only in the mind. The number ‘" also is as much
of a mental construct and no more, as the number *2’. The new number  is defined
in such a way that it not only satifies i = — 1, but when adjoined to the system of real
numbers it extends (R, +, .) into the bigger system (C, +. .) of complex numbers
satisfying the iative, ive, distributive properties already present in
(R, +, .). Having defined i in this way we arrive at the general complex number z = x +iy

_ where x and y are real numbers. We note that (1) x; + iy; = x; + iy, iff x; = x; and
M =2 (2) (@+ib) + (c +id)=(a+c) +i(b+d).(3) (a+ib) x (¢ + id) = (ac - bd) +
i(ad + be). (4) R < Cin the sense thatif xe Rthenx=x+i0e C.

If y = 0, the number is x and therefore a (pure) real number. If x = 0, the number is
iy and is called a wholly imaginary number. x is called the real part of the complex
number z and is written as Re(z) or Re(x + iy). The real number y is called the imaginary
part of zand is written as Im(z) or Im(x + iy). Thus we have, for every complex number
Z=x+ 1y

. x=Re(z) =Re(x + iy)
anG y=1Im(z) = Im(x + iy)

 Noveen Svarews - N, Z 0, B, wo C-Aw Ouria | B

Also x + iy and x - iy are called conjugate complex numbers. Note that
(x+iy)x-iy) =2+ ixy-ixy- 22 =2 + )2

By definition the sum of two compl is a complex number and the product
of two compl bers is also a complex number. It is now a routine exercise to
verify laws (1), (2'), (3"), (4) and (5') for all z € C and also the special laws (6") and
(7’) for ‘0" and ‘1" in C. Note that the same *zero’ and the same *1° which worked for
Z. Q and R also works here. Also at each stage of the extensions N to Z, Zto Q, Q to
R whatever extra advantages we got, they are all present in C. In fact C not only
extends (R, +. .) but extends them in a substantial manner. Any algebraic equation
such as

a"+a\2" '+ ... +a,=0
withall a;'s in C has all its roots in C. This complete solvability of all algebraic equations
is the major advantage of the extension from R to C. The result stating this complete
solvability is known as the Fundamental Theorem of Algebra, whose proof requires
quite a lot of higher mathematics.

But as before, we pay a price, and this time a big price for the extension. There is no
order relation in C which extends the order relation in R. This is the loss we are
prepared to put up with for the advantage gained in this last extension. But before we
see the full force of this loss, we have to make an important observation.

The real line, as we know, has been designed in such a way that there are no gaps, in

. the sense we explained earlier. In this sense therefore, the real line is ‘complete’. So
when we introduce new numbers like the complex numbers for purposes of being able
“to solve more algebraic equations, we cannot expect to have geometrical representations
of these numbers on the real line itself, keeping the earlier representation of numbers
on the real line. So mathematics invented two ‘copies’ of the real line, one perpendicular
to the other, the first one representing the real part of the complex number and the
second one representing the imaginary part of the complex number. Such a
representation of a complex number z = x + iy as a point (x, y) on the coordinate plane
is called an Argand Diagram. A point on the x-axis (now called the Real axis) is (x, 0)
and so represents the purely real numbers x; as a complex number it is nothing but
x +i0. A point on the y-axis (now called the Imaginary axis) is (0, y) and so represents
the purely imaginary number iy. Note that, throughout in this discussion, x and y are
real numbers.

[f P is the point (x, y), it represents the complex number z = (x + iy). We have the

g
<
E Px.y)=x+iy=z
g
£
o (x.0) Real Axis
Fig. 1.2
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regarding 2= X+ iy which is geometrically the

Howing tWo
same as P = (x,))-

igin is called the modul
Definition 3. The distance OP = 2 +* from the origini Wi

Itis denoted by | z| or | x +1¥ | Itis always non-negative.

For example |2+3i|=5 )
|1-i|=+2 andsoon.

Note that in particular the modulus of areal number x (=x+10) reduces to the following:

x ifx>0
Ix1=1-x ifx<0

Thus|-7|=-(T= 7=|7| The modulus is also called the absolute value.
Definition 4. If 6 is the angle which OP makes with the positive direction of the
vaxis, 8 i called the ‘argument”of z and is written arg 2. We usually take 6 = arg 21
lie between — 180° and 180°, i.e., such that - 180° < 6° < 180°.

Now since the cbmp]ex numbers are geometrically all over the plane, there is no
fatural order among them, which will coincide with the natural order of the _rcal numbers

+ (= complex numbers x + i0) on the real line (= x-axis of t.he {ng"fnd Dnagr@), and
which is properly compatible with the addition and multiplication in C. For instance,
whatever way we design the order, either the number i has to be greater than the number
zero or has to be less. Either way we get an incongruity with multiplication, since 2 =
~1and this would mean that the L.H.S. here is a product of two quantities which are
either both greater than 0 or both less than zero. In both the cases the R.H.S. being
negative, we face a ion. Thus it is impossible to i duce an order in C
which is compatible with multiplication in the above sense and which reduces to the
natural order on the real line. Hence two complex numbers are either equal or unequal;
there is no concept of greater or less.

This completes our outline of the five number systems N, Z. Q. R and C. We
summarise in Table 1.1 the information about what is gained by each extension and
what is lost. As'we go from N to Z t0 Q to R to C. note that what is once gained
remains a gain through all the further stages and what is once lost remains a loss inall
the further stages.

EXAMPLE 1. If (alb) < (cld) with b> 0,d > 0 show that (a + ¢)/(b + d) lies between
alb and cld. (where a, b, c, d are real numbers).
SOLUTION. If (a/b) < (c/d) and b, d are positive then ad < bc and hence
ab +ad < ab + be.
This means that a(b + d) < b(a + ¢) or (a/b) < (a + ¢)/(b + d).

 Nusnen Sveus : N, 20, B, o C-Aw Ouring | 1

Table 1.1. Gain and Loss in the Extensions From N To Z To Q To R To C

Properties which are an @) @) . uitg’
not present in N but a+x=b | ax=b, | Nogspsinthe | ATl
gained in an extension is solvable | (a # 0) is ical
solvable | construct which | are
represents the
; fumbers g
z Q R [

Properties which are present
in N but lost in an extension :
1.1fa> b then xa > xb 1’ is true

for all x. ‘l' I l

1 is not true

2. There exists a next greater 2' s true

number for every number. ] l

(Induction)

2 is not true

3. Itis possible to arrange 3’ is true

the entire system as an

infinite sequence.

(countability) 318 ot trwe
4. There exists a natural order 4'is true

relation compatible with

addition and multiplication

4 is not true

Similarly ad < bc means ad + ¢d < be + cd or (a + ¢)d < (b + d)c. This means that
(a + )(b + d) < (c/d). Thus (alb) < (a + (b + d) < (c/d).
EXAMPLE 2. Let a and b be positive integers. Show that N2 always lies between
(ab)and (a+2b)lfa+b).
SOLUTION. Suppose V2 < (a/b). Then 2 < (a*/b?) or 2b? < a. Therefore, we get
@ +4b* <@+ a? + 207 =247 + 21?
(a +2b)* = a* + 4b° + dab < 2a* + 2b* + 4ab = 2(a + b)?
& {(a+2b)(a+b)}><2or(a+2b)a+b)<V2
On the other hand if V2 > (a/b) then a* < 2b%,
2a+b)?=2(a” +2ab + b*) = a® + a* + 2b* + dab < a* + 2b* + 2b + dab = (a + 2b)?
or V2 < (a + 2b)/(a + b). Thus V2 always lies between a/b and (a + 2b)/(a + b).

EXAMPLE 3. Given any real number x > 0, show that there exists an irrational
number &, such that 0 < & < x.

SOLUTION. If x is irrational, then choose § = x/2. Clearly 0 < § < x.

If x is rational, then choose & = x/V2. Since V2 > 1, we have 0 < & < x.

(In fact there are infinitely many irrational numbers between any two real numbers.)
EXAMPLE 4. Show that N2 + N5 is irrational.

SOLUTION. Suppose Y2 + V5 = x = p/q is a rational number with p, g € Z.
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_\2p=Sie@-22x+2=5 ‘
1};‘:ce (; -3 rm,_ which gives V2 = (2 - 3)(20). 2 rational number.

- V2 + 5 is irrational.
s @ fact that V2 is rational. S0 :
This contradicts tho 1 number whose decimal expansion is

EXAMPLE 5. Express the ralifma
0.1234545454545 ... as ratio of two integers.
SOLUTION. Let x=0.123454545 ...
Then 10°% = 123.454545 ...
10%c = 12345.4545 ... .
(105 - 10%)x = 12222.
x = 12222/99000.
EXAMPLE 6. Find all positive integers n for whichN(n-1) + v.‘(n +1) is rationq],
SOLUTION. Let x, = Y(n — 1) + \(n + 1) be rational. Then 1/x; is also rational.
But 1x,=V(N(n=1) +V(n +1)
=+ 1) =Vn— 1)) = 1) +V(n + DN+ 1) =V(n - 1))
=+ D)+ -2
This means (V(n + 1) = V(n - 1) is also rational.
So (V(n - 1) and V(n + 1) are also rational.
i.e., (n—-1)and (n + 1) are perfect squares.
This is not possible as any two perfect squares differ at least by 3. Hence there is no

positive integer n such that (Jin-1+ J(n +1)) is rational.

EXAMPLE 7. If a + b = ¢ + Vd, where a, b, c, d are rational then a = ¢ and b=,
unless b, d are squares of rationals.

SOLUTION. Supposc a # ¢, leta=c+x. Thena+Vb=c +x+ Vb =c + Vd.

So x + Vb = Vd. Squaring we get, d — x>~ b = 2x\b. This implies that Vb is rational,
hence Vd is also rational. Thus b and d are squares of rationals. Hence the result.

Subtracting, we get

EXAMPLE 8. Ifa + b({/;) + d'{/;:; ), where a, b, c, p are rational and p is not a
perfect cube, then a, b, ¢ are all zero.

SOLUTION. Wehave  a+b(/p)+c(}fp? ) =0 )
Therefore, a@¥fp)+bp? )+ ep=0 )
Now b x (1) - ¢ x (2) gives

B -ac)yfp +ab-cp=0 )

i/; is irrational and therefore from (3) we get b~ ac = 0 and ab = *p.

c*p? = a¥b? = a’c. If ¢ # 0, then we get p? = a¥/c® which is not true as {p is
imational. .. ¢ =0 which in turn implies thata = b = 0.
EXAMPLE.1fa, b, ¢, d are all rational and, Na + b = ¢ + \d then show that either

(i)a=candb=dor(ii)a=dandb = c or (iii) the quotients \(a/b), N(a/c), (a/d),
N(blc), \(bld), N(cld), are all rational.

Chapter 2 Page 14 Arithmetic of Integers Page 14
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SOLUTION. Va + Vb = ‘Ic-Mldgivesonsquaﬁnga-pb:cd»dmd\/abs\/cdunhss
Vab, Ved are rational. (See Example 7.)

(Va - Vb)? = (Ve - Nd)? unless Vab, Ved are rational. This means that [ Va Vb |
=| Ve ~d | unless Vab and Ved are rational.
Case 1. Va + Vb =c +Vd and Va - Vb =c - Vd gives a = c and b = d.
Case 2.Va + Vb=Vc+VdandVa - Vb =Vd - Ve givesa=dand b=c.
That Vab and Vcd are rational implies that V(a/b) and V(c/d) are rational.

Va + b =c +Vd also implies Va~ Ve = Vd - Vb, which gives a = d and b = ¢ or Vac,
Vbd are rational. Finally we conclude that either

() a=candb=cor(ii)a=dand b= c or (iii) the quotients V(a/b), V(a/c), V(ald),
(blc), N(bld), (cld) are all rational.

EXAMPLE 10. Find a polynomial equation of the lowest degree with rational
coefficients of Which one root is {2 + 33/4 .

SOLUTION.Let  x=32+343.
Thenwehave  x*=2+ 108+ 18(32 +3¥4)
=110+ 18x.
X 18x-110=0

(Itis clear from Example 8 that no quadratic expression in x with rational coefficients
becomes 0. So the least degree is 3.)
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GEOMETRY-CIRCLES

4.1 CIRCLES-PRELIMINARIES

A circle is a geometric figure in a plane such that all its points
fixed point in the plane. The fixed point is the centre of the
distance from the centre is the radius of the circle.

are equidistant from 5
circle and the consant

O

A D

T~
Fig. 4.1

The circle S in Fig. 4.1 has centre O and radius r.

A chord of a circle is a straight line segment joining any two points on the circle. A
chord passing through the centre is called a diameter of the circle. In Fig.4.1,ABisa
chord of the circle § and CD is a diameter. Circles which have the same centre are
called concentric circles.

We observe that a point is within, upon or outside a circle according as its distance

from the centre is less than, equal to, or greater than the radius. Concentric circles
whose radii are unequal, do not intersect with each other. A circle is symmetric about
any of its diameters (Fig. 4.2). Also, a circle is symmetric about its centre (Fig. 4.3).
Theorem 1. The perpendicular bisector of any chord of a circle passes through the
centre of the circle.
Proof. Let O be the centre of a circle S and AB be any chord; let € be the mid point of
AB (See Fig. 4.4). We want to prove that the perpendicular bisector of AB passes
through O. In other words, we wish to prove that OC L AB. In the triangles AOC and
BOC we have OA = OB (radius of the circle), AC = CB (by hypothesis) and OC is
common. Therefore the two triangles are congruent. Hence AOCA = AOCB which
implies that ZOCA = ZOCB = 90° or OC L AB.

R

g
Fig.4.2 Fig.43 Fig. 4.4

- A circle i i f its diameters.
Corollary. A circle is symmetrical about any of ) .
Proof. Let AB be any diameter of a circle with centre O (Fig. 4.5). If Pis any pm:n ’33
the circle draw PQ L AB meeting the circle again at Q. Then by Theorem 1, PN = e
(Fig. 4.5). Thus the circle is symmetrical about AB. ; ) e
Theorem 2. Given any three non-collinear points A, B, C there exists a unique circ!
assing through A, B and C. . ) )
PPmol‘. Let A, B, Cbe any three non-collinear points. Suppose the perpel wd:::ulal'ul;l’sectoﬂcf -
of BC and CA meet at § (Fig. 4.6). Then S lies on l'hc perpe ndicular bisect i
implies that SB = SC (Theorem 12, Chapter 3). Agmn‘.“s is ;lﬂso osnclhlc:uperpemr i
impli = have SA = SB = SC.
bisector of CA implies that SC = SA. Hence we hay Hisesloda
i idi hould lie on the perpendicular bi:

t any point equidistant from A, B, and C should | e
ll';("“ :ng ?:\ Therefore, S is the only point equ@swu frcfm ,:m:“ ;:c: C;::d sg
circle with centre § and radius SA is the unique circle passing . -

Fig. 4.5 Fig. 4.6

r that the perpendicular bisecwnf of the sides o'fh:
rve that the point of concurrence is the centre of

angle: hence it is called the
ircle of

We saw in the previous chapte

i bse:

triangle concur at a point. We ol ! .

uniqﬁc circle passing through the vertices of. the 'm| B
circumeentre of the triangle and the corresponding circle i

the triangle. o .
Comlluiy 1. 1f two circles have three points in common, then they must coind 5
Proof. Immediate from the theorem.

Corollary 2. Two circles cannot intersect in more than two points.



P"“‘lmmedinc from Corollary 1. Q
Corollary 3.1 4 B Care any three points on a circle and O is a point within the circle

such that OA = OB = OC then O is the centre of the circle.
Proof. 1t is immediate from the theorem.

Corollary 4.7y circles cannot have a common arc unless they coincide.

Proof. Any arc of a circle contains infinitely many points. Hence by Corollary 1, if
two circles have a common arc, then they coincide.

Theorem 3, Equal chords of a circle are equidistant from the centre. Conversely, if
two chords of a circle are equidistant from the centre, then they are equal.

Proof. Suppose AB and CD are two equal chords of a circle with centre O. Let OX, OY
be the perpendiculars from O onto the chords AB, CD respectively (Fig. 4.7). It is
required to prove that OX = OY. By Theorem 1, OX and OY are the perpendicular
bisectors of AB and CD. Hence AX = CY = 1/2 AB = 172 CD. Now, in AAOX and
ACOY we have ZAXO = ZCYO =90°, hypotenuse AO = hypotenuse CO (radii) and
AX = CY. Therefore AAOX = ACOY and hence OX = OY. Thus, the two equal chords
AB and CD are equidistant from the centre 0.

Converse. We may use the same figure, Fig. 4.7. But now we assume OX = OY and we
wish to prove that AB = CD. Again, we compare the right triangles AOX and COY. We
have hypotenuse AO = hypotenuse CO and OX = OY. Therefore, the two triangles are
congruent and hence we get AX = CY. But by Theorem 1, AX = (1/2) AB and
CY = (1/2) CD. Therefore, AX = CY implies that AB = CD.

Theorem 4. Given any two chords of a circle, the one which is nearer to the centre is
greater than the one more remote.

Fig. 4.7 Fig. 4.8

Proof. Let AB, CD be two chords of a circle with centre O. Let OX, OY be the
perpendiculars to AB, CD meeting them at X, Y respectively. (Fig. 4.8). Suppose
OX < OY. Then from the right triangles AOX and COY we have AO* = OX* + AX* and
C0?= 0Y? + CY*. But AO = CO = radius of the circle. Therefore we get OX? + AX® =
OY? + CY2. By assumption OX < OY and so OX? + AX* = OY? + CY* can hold good if
and only if AX > CY. But by Theorem 1, AX = (1/2) AB and CY = (1/2) CD.

Thus OX < OY implies that AB > CD.

Fig. 4.10

Theorem 5. The angle subtended at the centre is double the angle subtended at any
point on the ining part of the ci for any arc of a circle.

Proof. Let AXB be an arc of a circle with centre O and C be any point on the remaining
part of the circumference. It is required to prove that ZAOB =2 ZACB. Let CO meet
the circle again at D. Suppose O lies within the angle ACB as in Fig. 4.9(a) or Fig.
4.9(b). The triangles AOC and BOC are isosceles (Why?) and so we have ZOAC =
ZOCA and ZOBC = ZOCB. This gives, ZAOD =2 ZACO and £BOD =2 £BCO.
Adding, we get ZAOD + ZBOD = ZAOB =2(ZACO + £BCO)=2 LACB.If Ois
not within £ ACB as in Fig. 4.9(c), then we have £ BOD ~ ZAOD =2(£BCO - £ZACO)
which in turn gives ZAOB =2ZACB. Q
Theorem 6. Angles in the same segment of a circle are equal.

Proof. Let ACB, ADB be two angles in the same segment ACDB of a circle with centre
0.

Then by Theorem 5, we see that ZACB, = (1/2) ZAOB = ZADB. Hence, angles in the
same segment are equal. (See Fig. 4.10(a) and 4.10(b)).

If the segment happens to be a semicircle as in Fig. 4.10(c), then ZAOB = 2 right
angles = 180° sines AOB is a straight angle in this case. This observation leads to the
following corollary. .

Corollary. The angle in a semicircle is always 90° n]



'lw 7.1f a straight line segment
other points on the same side of it,
[We say that f i ic isaci i

o y our points are concyclic if there is a circle passing through all the four
!’r?f. Let the line segment AB make equal angles at Cand D, i.e., Z/ACB = ZADB as
inFig. 4.11. Then we wish to prove that A, B, C, D are concyclic. Draw the circle ABC
Ppassing through A, Band C. Suppose this circle does not pass through D; let it cut Ap
(or AD produced as in Fig. 11) at E.

Now, by construction, ZACB = ZAEB (an i

] X = gles in the same segment). But b
hypothesis ZACB = z ADB and therefore ZADB = Z AEB. This means that the exfe:’i::
.ln_glc AEl.i of AEDB is equal to an interior opposite angle of the same triangle, which
is lmp;ssmle. Hence the circle ABC passes through D or in other words A, B, C, p are
concylic. ‘

Joining two points subtends equal angles at two
then the four points are concyclic.

Fig. 4.1

1. OA, OB are two equai line segments; the circle wi
A, B. Prove that ZAOC = Z BOC.

2. If A, B are any two point-, on the circle S,
entirely within the circle.

ith centre C and radius r passes through
prove that the chord AB which joins them lies

3. When twocircles (Cy, y) and (C;. r,) cut, provethatry ~ry<d<ry + rywhere d= C,C,.
4. When two circles cut each other then prove that the line joining their centres bisects their
common chord at right angles.
5. A chord PQ of a circle cuts a concentric circle at 7, Q' Prove that PP’ = QQ'.
. Prove that two chords AB, CD of a circle bisect each other if and only if both of them are
diameters.
7. Twocircles cut each other at A, B. If PAQ and RBS are paralle! straight lines meeting the
circles again at P, Q, R, S, then prove that PQ = RS.
8. Show that the locus of the midpoints of a family of parallel chords of a circle is a diameter
which is perpendicular to the given family of chords.
9. If PORS is a parallelogram whose vertices lie on a circle then PR and QS are diameters
of the circle (see problem 6).
10. Prove that every circle passing through a fixed point and having its centre on a fixed
straight line must pass though another fixed point.
11. Two straight lines OAB and OCD are drawn from an external point O to cut a given

circle at A, B, C, D. Prove that the intersection of AD and BC cannot be the centre of the
circle.

12. ABCD is an isosceles trapezium. Prove that a circle can be drawn passing through A, B,
Cand D.

13. C is the midpoint of an arc ACB of a circle. Prove that C is equidistant from the raliius
through A and B.

14. ABand CD arc two diameters of a circle and CE is a chord parallel to AB. Prove that Bis
the midpoint of the arc DBE.

15. ABCD is a quadrilateral inscribed in a circle such that AB = CD. Prove that AC = BD.

16. A, B, C are three points on a circle and D, E are the midpoints of the minor arcs cut ¢ff by
AB, AC. Prove that DE is equally inclined to AB and AC.

17. O is the centre of the circumcircle of an acute angled AABC. Show that £ OBC is the
complement of ZBAC.

18. ABC and A’B’C” are two triangles such that ZA = ZA” and BC = B’C”. Prove that the
circumcircle of AABC is equal o the circumcircle of triangle A’B’C”. .

19. ABCD is a quadrilateral inscribed in a circle. If the diagonals AC and BD are at right
angles, show that AB and CD subtend supplementary angles at the centre.

20. Find locus of middle points of chords of a circle which pass through a fixed point.

. Given the base and the vertical angle of a triangle show that its area is greatest when it is

isoscel.

22. ABCisatriangle and A”, B’, C’ are the midpoints of the sides BC, CA.ABtespecﬁvt!Y- If
AD is the altitude though A, prove that £ BDC = £ BCA. Hence show that the circumcircle
of A’B’C also passes through the feet D, E, F of the altitudes of triangle ABC.

23. Two circles intersect at A and B; PAQ is a straight line through A meeting die circles
again at P, Q. Find the locus of the midpoint of PQ.

24. The circumferences of three unequal circles whose centres are A, B and Cpssthfough a
common point, O, from which lines are drawn through A, B and C meeting the
circumferences at A’, B’ and C”. Show that the sides of AA’B’C” pass through the other
points of i ion of the circles and are respecti wmlellomzsiksormewc,

25. A chord of constant length slides round a fixed circle. Show that the locus of any point
fixed in the chord is a concentric circle.

26. A. B are the midpoints of two equal chords in a circle and the straight line joining A, B

meets the circle at P, Q. Prove that PA = QB. .
27. Prove that of all chords of a circle which are bisected by a fixed chord, the greater is that
which meets the fixed chord at a point nearer its midpoinl: s S s
i meets the circumcircle in D. N

e "“‘"‘“‘l hlmul;.‘:c“ :’f AABCfmm D, then prove that AE = (AB + AC)/2.

29. 1f Iis the incentre of AABC and Al meets the circumircle at D, then prove that DB = DC

=DI.

. 1f H is the orthocentre of AABC and AH meets BC at D and the circumgircle at E, then

prove that HD = DE.

-]

=

4.2 TANGENTS

I . we have seen that a straight line cuts a circle at, utmost two po'!nls. If a
s:;cgt;:rldilne has just one common point with a circle, we say that the §mghl line
touches the circle. In that case, the straight line is called a tangent to the circle and the
point at which a tangent touches the circle is known as the pom(. of_ contact of the
tangent. Two circles touch one another when they have only one pm.m in (.:ommon and
have a common tangent at this point. Circles may touch externally in which case they



are on opposite sides of !he common tangent; or they may touch internally, in which
case they are on the same side of the common tangent (Fig. 4.12).

External contact

Fig.4.12 . P

Internal contact

Theorem 8. One and only one tangent can be drawn 10 a circle at any point on its
i and this tangent is perpendicular to the radius through the point of contact.
Proof. Let P be any point on a circle with centre O.

Fig.4.13

Draw APB L OP as in Fig. 4.13. If X is any point on the straight linc APB different
from P, then ZOPX is a right triangle with OX as its hypotenuse. Therefore OX > OP
= the radius of the circle. This means that X lies outside the given circle. This is true for
cvery point X on the straight line APB except P. Hence the straight line AB touches the
cicle at P or in other words, the straight line through P perpendicular to the radius OP
is 2 tangent to the circle at P. If any other straight line / through P is considered, let M
> the foot of the perpendicular from O on /. Then as / is not perpendicular to OP, we
see that M # P. On this straight line cut off MQ equal to PM (Fig. 4.13). Then by
c ion, OM is the i bisector of PQ; and therefore OP = OQ. This
means that the point Q also lies on the given circle; and the straight line / cuts the circle
at two distinct points P and Q. This says that / is not a tangent to the circle. Hence the
theorem.
Theorem 9. If two tangents are drawn to a circle from an exterior point then (i) the
lengths of the tangents are equal (i) they subtend equal angles at the centre (iii) the
angle between them is bisected by the straight line joining the point and the centre.

e

proof. See Fig. 4.14. Let A be an exterior point to the circle with centre O and AP, AQ
pe two tangents from A to the circle touching the circle at P and Q respectively. Then
it required to prove that (i) AP = AQ (ii) ZAOP = £AOQ (iii) £ PAO = £ QAO. As
APand AQ are the tangents to the circle at P and Q. We have ZAPO = ZAQO =90°.
We note that the right angled triangles OAP and OAQ are congruent (RHS theommé
Thereivie AP = AQ, ZAOP=ZA0Q and ZPAO = £ QAO.

Given a circle and a point A exterior to it, how many tangents to the circle can be
drawn through A? The following theorem answers this question.

Q
Fig. 4.14

Theorem 10. There are exactly two tangents from an exterior point to a given circle.

Fig. 4.15

Proof. Suppose P is the point of contact of a tangent to the circle from A. Then as
ZAPO =90°, P must lie on the circle AO as diameter (Theorem 7). Now, the circle on
AO as diameter and the given circle cut exactly at two distinct points since A lies
outside the given circle. (Fig. 4.15). Therefore, the points of contact of the tangents
from A to the given circle must be the two points of intersection of the circle on AO as
diameter and the given circle. Thus there are exactly two tangents from an exterior
point to a given circle.

We have already seen that if A lies on the circle, there is a unique tangent to the
circle through A. If A lies inside the circle and AP is a tangent to the circle with Pas its
point of contact, then AAPO must be a right angled triangle, right angled at P. Therefore
AO? = AP? + OP? and AP? = AO* — OP2. But A lies inside the circle implies that AO? —
OP? <0). This gives AP? < 0 which is impossible, since the square of any real number
is always non-negative. Hence there is no tangent to the circle through an interior
point of the circle.



Theorem 11. If two circles touch one another, then the point of contact lies on the
straight line joining the centres.

X X
5 <

Fig. 4.16

Proof. Let two circles with centres A and B touch each other at P. It is required to
prove that A, P, B are collinear. Since the circles touch each other at P (Fig. 4.16), they
have a common tangent PX at P. Hence PA and PB are both perpendicular to the common
tangent XP at P. This is possible only if A, P and B are collinear and the straight line AB
is perpendicular to the common tangent. Q
Corollary. If two circles touch each other, then the distance between their centres is
equal to the sum or difference of their radii.
Proof. If A and B are the centres of two touching circles with radii 7, and 7, and if P is
their point of contact, then by Theorem 11. A, P and B are collinear. When the circles
touch externally Plies in the line segment AB and we have AP + PB=ABor r, + r,=AB.
When they touch internally, P lies outside the segment AB and we have AB = AP - BP
or BP — AP depending upon AP 2 BP or AP< BP. Thus AB= |AP + BP |=|r 1, |=
sum or difference of their radii. Q
Remark. The perfect symmetry of a circle about its centre and about any of its diameters
tells us that equal arcs subtend equal angles at the centre; and conversely if two arcs
subtend equal angles at the centre then they are equal in length.
Theorem 12. In equal circles (or in the same circle) if two chords are equal, then they
cut off equal arcs on the circles.

‘
X Y

Fig. 4.17

Proof. Let AB and CD be two equal chords of two equal circles with centres O, and O,
respectively. It is required to prove that arc AXB = arc CYD in length. By the SSS
theorem AAO;B = ACO,D and so ZAO,B = ACO,D. Therefore by our remark
preceding the theorem arc AXB = arc CXD in length. a
The converse of the above theorem, namely, “In equal circles (or in the same circle)
if two arcs are equal then they cut off equal chords on the circles™ is also true. The
proof is left as an exercise
Theorem 13. In any circle, the angle between a tangent and a chord through the point
of contact of the tangent is equal to the angle in the alternate segment.

Fig. 4.18

Proof. Let PT be a tangent to a circle with centre O, the point of contact being P. Let
AP be any chord through P. It is required to prove that ZAPT = ZAQP where Q is any
point on the other segment determined by AP. Let PR be the diameter through P. Then
ZPAR = 90° (angle in a semi-circle) and ZRPT = 90° (Fig. 4.18). Therefore ZARP
=90° - ZAPR (from the right triangle RAP) = ZTPR - ZAPR = ZAPT.But ZARP =
ZAQP and hence ZAPT = ZAQP = angle in the alternate segment. (]

®)

Fig. 4.19
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Theorem 14, A common tangent to two circles divides the straight line segment joining

their centres, externally or internally in the ratio of their radii.

Proof. Suppose PQ is a common tangent to the two circles with centres A, B and radii
7y, rz respectively such that P and Q are the points of contact with the corresponding
circles. Let PQ meet the line of centres joining A and B at S (Fig. 4.19(a)) or §’
(Fig. 4.19(b)). We have ZAPS = £BQS = 90°. Therefore AP || BQ and the triangles
BQS and APS are equlangular and hence similar.

\thn PQ meets AB at §” as in Fig. 4.19(b), §’ divides AB internally and again the
similarity of the triangles APS” and BQS’ gives

AS” _n
5B n
s %
Fig. 4.20
Thus any common tangent to two circles divides the straight line segment joining their
centres either internally or externally in the ratio of the radii. [u]

1. The points S and §” dividing the line segment joining the centres of two
circles internally and externally in the ratio of their radii are known as the centres of
similitude of the two circles.

When S and S” are both exterior to the circles as in Fig. 4.19(a), Fig. 4.19(b), there
are two common tangents from § and two common tangents from §”. The two common
tangents from the external centre of similitude are the direct common tangents and the
two common tangents from the internal centre of similitude are the transverse common
tangents. Thus in general, there are four common
tangents to two circles. When two circles touch
externally (Fig. 4.20) there is only one transverse
* common tangent and there are two direct common
tangents. When two circles wuch internally (Fig.4.21) 5
there is only one direct common tangent and no
transverse common tangents, as S lies inside both the
circles. Also when two circles cut each other, there are
two direct common tangents and no transverse common
tangents (Fig. 4.22). When one circle lies entirely within
the other there are no common tangents. Fig. 4.21

w

N

Fig. 4.22

EXERCISE 4.2

If PA, PB are tangents to a circle whose centre is O, then prove that ZAPB + ZAOB = 180°.

. 1f P, Q and R, S are the points of contact of the two direct common tangents to two circles

prove that PQ = RS.

. If P, Q and R, S are the points of contact of the two transverse common tangents to two

circles prove that PQ = RS.
If two circles intersect at A, B prove that the angle between the tangents at A is the same
as the angle between the tangents at B.

. If acircle can be inscribed in a quadrilateral, prove that the sum of one pair of opposite

sides is equal to the sum of the other pair.
If acircle can be inscribed ina prove that the is arhombus.

. 1fastraight line cuts a circle at A, B prove that it cuts the circle at the same angle at cach

of these points.

, What is the locus of the centre of a circle which touches two given parallel straight lines?
, S, and 5, are two concentric circles and AB is a chord of quter circle §) touching S; at C.

Prove that AC = CB.

. What is the locus of the centres of circles which touch a given circle at a given point?

What is the locus of centres of circles of given radius which touch a given circle?

. Two circles with centres A, B touch at P. If XPY is drawn to cut the circles again at X, Y,

prove that AX Il BY.

. Twocircles intersect in A and a straight line XAY is drawn to cut the circles again at X and

¥. Tangents at X and ¥ to the respective circles cut at Z. Prove that ZXZY is equal to the
angle between the tangents at A.

, A straight line cuts two concentric circles in A}, A, and By, B,. Prove that the four

intersections of a tangent at an ‘A’ and at a ‘B’ lie on another concentric circle.

. Astraight line of given length subtends given equal angles at two fixed points. Prove that

the straight line a always touches a fixed circle.

. Three equal circles pass through a given point H and meet one another two by two at

A, B, C. Prove that H is the orthocentre of AABC.

. Atangent to acircle at a point P on it, is parallel to the cllordAB Prove that P bisects the

arc cut off by AB.

. ABis achord of a circle and AT is the tangent at A. Prove that the bisector £ BAT bisects

the arc AB.



19. Al:x AC are tangents from A to a circle touching the circle at B, C. If D is the
munor arc BC, prove that D is the incentre of AABC.
20. The diagonals of the
COD touch each other.
21. ABisachord of a circle and PA

:hl;gA and DA bisect the angles BAP and BAQ. Show that CD is
0 AB.

22. Two circles touch internally at X and a straight line cuts them i
aA B C D
Prove that AB, CD subtend equal angles at X. monle
23. Suppose the internal and external bi
E and F respectivel
that D bisects EF.
24. Atriangle ABC circumscribes a circle.
the altitudes of AXYZ are D, E, F
AABC.

If in a quadrilateral, the sum of one pair of opposite sides is equal to the sum of the other

" r;lr. pnlwe that a circle can be inscribed in it. (See problem 4- Problems Ch. 3)

acircle can be inscribed in a i st
quadsi Pty Qquadrilateral prove that the bisectors of the angles of the

27. Four circles of different radii are such that ea
others. Show that a circle can be inscribed in
are the centres of the given four circles.

28. If the circumference of a circle is divided into n equal parts, prove that

_(i) the points of division are the vertices of a regular polygon
(i) the tangents at the points of division are the sides of a regulaPpdygon

29. Two circles cut at right angles, (i.e, the angle between the tangents at their points of
intersection is 90°). Show that the area common to the two circles together with the
square on the radius is equal to the area of either circle

30. Two given circles intersect at A and B. A straight line through B meets the circles again at
Cand D. (i) Show that CD is greatest when it is parallel to the line joining the centres.
(if) When is the area of AACD the greatest possible?

31. ABis a diameter of a circle and BM is the tangent at B. If the tangent at a point C on the
circle meets BM at X and if AC produced meets BM at ¥, prove that BX = XY,

32. Prove that if a chord and a tangent are drawn from a point on a circle, the midpoint of the
subtended arc is equidistant from them.

33. A and B are points on two concentric circles. Prove that the angle between the tangents at
A and B is the same as the angle subtended by AB at the centre.

34. Two circles are said to cut each other orthogonally if the angle between their tangents at
a common point is a right angle. Show that the locus of the centres of circles cutting a
given circle orthogonally at a given point is a straight line.

35. Find the locus of centres of circles of given radius cutting a given circle orthogonally.

36. If AB is a common tangent to two circles, prove that the circle on AB as diameter cuts
each of the circles orthogonally.

37. I two circles of radii ry, r, cut orthogonally at A, B prove that AB - d = 2r,r, where d is
the distance between their centres.

38." If H is the orthocentre of AABC, show that the circles on-AH and BC as diameters cut
orthogonally.

isector of ZA meet the side BC and BC (produced) at
y. If the tangent at A to the circle ABC meets BC produced at D, prove

. with points of contact being X, ¥, Z. If the feet of
prove that the sides of A DEF are parallel to the sides of

ich circle touctes two and only two of the
the quadrilateral ABCD where A, B, C, D

e T T

Theorem 17.1f AB and CD are any two chords of a circle meeting at a point P then
PA- " v2.pD (known as the secant property of a circle).

D,
(4
P
A
B
)
Fig. 4.25
Proof. In AAPC and ADPB we have
ZAPC = LDPB (See Fig. 4.25(a) and Fig. 4.25(b))
@ 4£PDB=ZPAC (In Fig. 4.25(a) these are angles in the same segment
and in Fig. 4.25(b) ext £ PAC = int. opp £PDB)
£DBP = LACP (reasons same as above).

Hence the two triangles are similar. This gives
%-:—g=orPA<PE=PC»PD. a
Theorem 18. If P is any point on a chord AB (or AB produced) of a circle with centre
Oand radius r, then AP - PB =~ OP* or PA - PB = OP* - /* according as P is within
the circle or outside tHe circle.
Proof. Let CD be the diameter through P. Then by Theorem 17, AP - PB= CP - PD =
(CO - OP) (DO + OP) = r* — OP* since CO = DO = r, when P lies inside the circle as
in Fig. 4.26(a). If P lies outside the circle as in Fig. 4.26(b), then we have PA - PB =
PC-PD=(0OP-0C)(OP+0D)= 0P~ 1. a
Corollary. If P is any point on a chord AB produced of a circle with centre O and
radius r then PA - PB = PT? = (length of the tangent from P)2.
Proof. Let PT be the tangent to the circle touching the circle a 7 (Fig. 4.27). Then PTO
is a right triangle. P2 = OP? — 12 = PA - PB (by Theorem 18). a
/P
B (A
B

(H)C )
Fig. 4.26

midpoint of
parallelogram ABCD meet at 0. Prove that the circles AOB and

Qis the tangent at A; Cand D are points on the circle such
adiameter perpendicular

Prpu——

sy

e

9. oisuﬂxedpoim'.Pi!lvlril.blapoinlonlﬁxedcixchs.IfFisml.helineOPmdnhl
" OP/I0P = A = a constant, find the locus of . o
40. Oisa fixed point; P is a variable point on a fixed circle with centre C. The line bisecting
" Z0CP meets OP at P’. Find the locus of 7. . e
41. A straight line OPQ is drawn through a centre of similitude O of two circles to cut
* P and Q. Prove that the tangents at P, Q are parallel. N
42. Two circles cut at A and B and their common tangents meet at 0. If AP, AQ are th
tangents at A to the two circles, prove that OA bisects ZPAQ. —
43. Prove that if three circles are tangent to one another, the tangents at the points o
’ are concurrent.

4.3 CYCLIC QUADRILATERALS

A quadrilateral ABCD is cyclic if there is a circle passing through all the four vertices
f the quadrilateral. . '

?l‘heorem 15. The opposite angles of a cyclic quadrilateral are supp!emenuron ity

Proof. Let ABCD be a cyclic quadrilateral inscribed ll)n a ;:BIBchNv;:h ;:;nue .m :
. = 4ZD= x , by Theorem 3.

d to prove that ZA + £C=180° and ZB +
r:lll;l;/“;l:‘d =2 £C (Fig. 4.23). Therefore, 360° =+ P=2(LA+ LO)or dAa
£ C=180°. Similarly ZB+ £D = 180°.

Fig. 4.23 Fig. 4.24

Corg f ABCD is acychc quadrilateral then any exterior an, le of ABCD is equal
oliary. IFABCD is 1 gl CD is eq!

{0 the interior opposite angle.
Proof. We wish to prove Q\gl \
angle ADC (Fig. 4.23); this is im!
Theorem 16. If two opposite an,
it = D = 180°.
Lfk ‘)l‘ Let ABCD be a quadrilateral such that ZA + A(;‘h ul.:g;‘ lziu ey

Sl:’el F} 4.24). Suppose the circle through A, B and D cu‘ssou e sABAD e
Eﬁu:n A%I-Fl-) isacyclic quadrilateral. Therefore £ BED = lD “z‘ 2B ‘y;is i
ZBCD —.l8()° by our hypothesis. Hence ZBED = [?C R h'. .
ex(cr‘ior‘angle of ABCE is equal to an interior opposite angle, which i pOSSi B

i i lic.
= E or the quadrilateral ABCD is cyci ) ) )
13““’2?“" aCbove proof also works when E lies on DC produced, in which case BCD is an
ot e

exterior angle of ABCA.

the exterior angle XBC is equal to the interior opposils
medialcsinceéXBC=|8»0"—AB=£D. : L
gles of a quadrilateral are supplementary then it is

Fig. 4.27
Definition 2. If P is any point in the plane of a circle with centre O and radius r, the
power of P with respect to the circle is defined as OP? - . Thus if directed segments
are used then PA - PB = Power of P with respect to the circle whenever P is a point on
the chord AB (or AB produced).

We note that if P lies on a circle Z, then the power of P with respect to I is zero; if
P lies outside the circle, then the power of P is the square of the length of the tangent
from P; and if P lies inside the circle, the power of P is negative.
Theorem 19. If two straight line segments AB and CD (or both being produced) intersect
at P so that PA - PB = PC - PD then the four points A, B, C, D are concyclic.
Proof. Let the circle through A, C and D cut AB or AB produced at E. (Fig. 4.28). Then
by the secant property of a circle PA - PE = PC - PD. But by our hypothesis PA - PB =
PC - PD and hence PE - PB, which means that E coincides with B. Thus A, B, C, D are
concyclic. Q

D

Fig. 4.28

Theorem 20, If AD bisects the vertical angle A of AABC meeting the base BC at D
then AB - AC = BD - DC + AD?. g

A

Fig. 4.29
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pmof_.be( AD cut the circumcircle of AABC again at X. Then ZABD = ¢,
angles in the same segment determined by the chord AC. Also, Z BAD = /
bisects ZA. Therefore AABD lll AAXC (Fig. 4.29) and

g MABC 4D

AX AC
This gives AB - AC = AD - AX. Also, AD*> = AD (AX - DX) implies that AD - AX = Ap?
-+ AD - DX. Therefore we get AB - AC = AD - AX = AD? + AD - DX. By the secant
property of a circle we have AD - DX = BD - DC. Hence AB- AC=BD - DC + AD2. Q
Theorem 21. If AD is the altitude through A of AABC and if R is the circumradius of
AABCthen AB-AC=2R- AD.
Proof. Let AE be the diameter through A of the circle ABC. (Fig. 4.30). We have
£ADC = £ABE =90° and ZACD = ZAEB (angles in the same segment).

AXC being
CADasAD

Therefore AADC lll AABE and so A5 - AE
AD AC
This gives  AB-AC=AE-AD=2R - AD.

Q
abc .
Corollary. A=Areaof ABC = Fr 7 (usual notations)
1 abe _ abc
Proof, We ha A= —a-AD= S L
Ses g 2.2k 4R a
A
c
2 D
A
Fig. 4.30 Fig. 4.31
Theorem 22, (Ptolemy’s Theorem)
The gl ined by the di Is of a cyclic is equal to the

sum of the rectangles contained by pairs of opposite sides.

Proof. Let ABCD be a cyclic quadrilateral. It is required to prove that AC - BD =
AB - CD + BC - AD. We may assume without loss of generality that ZADB > ZBDC.
Draw DE meeting AC at E such that ZADE = ZBDC. (Fig. 4.31). Then the triangles
ADE and BDC are equiangular and hence similar. Therefore

AD _AB AD . BC=BD - AE
BD. e O \LemESmAgs y
Again, ZADB = LADE + LEDB = ZBDC + ZEDB = Z EDC

and ZDBA = ZDCE (angles in the same segment).

e -

Therefore AADB ||| AEDC and so

AB _ BD @

—=——orAB-CD=BD-EC

EC CD -
Adding(l)allda)Wege(AB-CD+BC~AD=BD(AE+EC)=BD' .BC.AD>
Theorem 23. If ABCD is a quadrilateral which is not cyclic then AB - CD +

AC - BD.

Fig. 4.32

Proof. Suppose ABCD is not a cyclic quadrilateral, draw the circle ABD. lr;t.:); l:: :
straight line symmetric to AD about the bisecto'r of L'BAC. h? other woAx ;uch e
straight line such that ZXAB = £ CAD. There is a unique point O on R il
ZAOB = £ ACD. Therefore, comparing the trim‘:gles AOB and ACD, the 5 gn o
angles ABO and ADC must also be equal. This means that O does not lie
(otherwise ABCD becomes a cyclic quadrilateral).

: A0_4B_OB m
AAOB ||| AACD gives AC _AD _CD

96 ,4c @
Also, AOAC Il ABAD (Why?) gives = E)— =AD"
chccA()BD:OC-AD<(OB+BC)'AD=OB~AD+BC'AD i
=AB - CD + BC - AD. from (1) ) )
Note. With notations as in the proof of Theorem 23, we note that if ABCD is cyclic, we must
have O lying on BC and OC=0B+BC. i
AC-BD= DC‘AD=(OB+HO’AD!OB'AD*BC<AD=AB~CD+BC-ADW|IIChlS
Prolemy’s theorem. B
Corollary. Quadrilateral ABCD is cyclic iff AC - BD=AB - CD +AD - BC.
Proof. Immediate from the theorem.

. ABCD is a cyclic quadrilateral and AB, CD are produced to meet at X. Prove that AXAD
and AXCB are similar. ) )

. If I is the incentre of AABC and /, is the excentre opposite to A, prove that BICI, isa
cyclic quadrilateral.



3. lnAABC.ADIndBEanlhelllil\ldcslhmughAandB.linsmeoﬂhocenlm,mve
the quadrilateral DHEC is cyclic. Hence show that ZAHB =1 — £ Cand that the circ
AHB and ACB are equal circles. =

4. Oisthe centre of a circle and AB is a diameter of
and meets a chord AC (or AC produced) at D,
the circle through 0, D, B, C.

S. Let P be any point on the circumcircle of triangle ABC and let L, M, N be the feet of the

iculars from P on the sides BC, CA, AB respectively. Prove that L, M, N are

thecircle. If OD is perpendicular 1o A
then prove that the circle AOD is equal to

collinear,

6. InAABCIletA’, B, C'. be the midpoints of BC, CA, AB and let H be the orthocentre. Ifp
is the midpoint of AH, prove that the circle A’ B C passes through P. Hence prove that
the midpoints of the sides of triangle ABC and the midpoints of the line segments joming
the orthocentre to the vertices all lie on a circle.

7 Usingpmbkm&wovemuti:cimleﬂmughlhe idp f the sides and the midpoi
of the lines joining the orthocentre to the vertices also passes through the feet of the
altitudes of the triangle.

8. Ina quadrilateral ABCD, the bisectors of the angles A, B meet at E and those of B, c.c
D;D,Ameetin F, G, H respectively. Prove that EFGH is cyclic.

9. If the exterior angles of a quadrilateral are bisected by four straight lines, prove that
these four straight lines form a cyclic quadrilateral.

10. X.Y,Zare any three points on the sides BC,CA,AB of tnangle ABC. Prove that the three
circles AYZ, BZY and CXY meet at a point,

11. A, B, Care three collinear points and P is
are i 10 PA, PB, PC resp y. Prove that P, D, E, F are concyclic.

12. ABCDisa cyclic quadrilateral; the sides AB and DC are produced to meet at X and AD,
BClpmdumd meel at Y. Show that the misectors of the angles BXC, CYD are at right
angles.

13. If X is any point on the internal bisector of ZA, prove that

ABAX/ACAX = BAIAC.

14. Find a point X inside AABC such that

AAXB:ABXC:ACXA=k:l:m
where k, [, m are given constants.

15. The diagonals AC, BD of a ¢
AD - DC = BO/OD.

16. S, and S, are two circles touching internally at O, with S,
line cuts Sy at A, D and S, at B, C. Prove that

AB:CD=(0A - 0B): (OC - OD).

17. X is any point on the circle through the four vertices of a cyclic quadrilateral ABCD. If x,
¥.2.w, u, tare the perpendicular distances of X from AB, BC, CD, DA, AC, BD respectively,
prove that xz = yw = ur.

18. ABis achord of a circle and the tangents at A, B meet at C. If P is any point on the circle
and PL, PM, PN are the perpendiculars from P to AB, BC, CA prove that PL? = PM - PN.

19. Xis any point on AB and the median AD of triangle ABC meets XC at ¥. Prove that XY/YC
=AX/XB.

20. ABisadiameter of a circle and PQ is a chord perpendicular to AB meeting AB at X. If the

tangent at P meets AB at ¥, prove that YQ/QX = YP/PX.

21. A, B are fixed points; AP and BQ are parallel chords of a variable circle such that APIBQ

is a constant. Prove that the locus of P is a circle.

apoint not in the line AB; AFE, BFD and CED

yclic quadrilateral ABCD meet at O. Prove that AB - BC/

being the inner circle. A straight

B

e

Two given circles subtend equal angles at a point P. Find the locus of P.
4 X is any point on the minor arc BC of the circum circle of an equilateral triangle ABC.
B Brove that XA = XB + XC.

24 ABC s an isosceles riangle with AB = AC. The altitude AD meets the circumcircle at .
" Prove that AP - BC=24B - BP.

25. ABCDE is a regular pentagon; P is any point on the minor arc AB of the circum circle of
" 'ABCDE. Prove that PA + PB + PD = PC + PE. N
26, Pisany pointinside a paraliclogram ABCD such that ZAPB + £ CPD = 180°. Prove
" AP.CP+BP-DP=AB-BC.

4.4 TRIANGLES REVISITED '

te. Here and in the rest of the book, the angles of a AABC may be denoted by A,OB. Cinstead
N:A:i /B, 2 C wherever the context is clear like for example, A + B + C = 180°. -
?l'lleorem 24. Let ABC be a triangle, AD the altitude through A a:d A e
circumdiameter through A. Then £ DAK = £ B - £ C. Further the angular bisector
of ZA bisects ZDAK. e -
Proof. We have  ZABC = ZAKC (angles same s -

: ZBAD =90° - ZABC = 90° - ZAKC = ZKAC (Fig. 33)
=ZA-2(90°-£B)
ZDAK = ZBAC -2 £BAD = LA -2(%0 5
=/A+2/B-180°=ZB-ZCsinceA+B+C= 180°.

B X [}

Fig. 4.34

Fig. 4.33

¢ theorem. We have taken B, C both acute in Fig.4.33.

e i st of B and Cis obtuse. Let AXL be the angular bisector

The same proof works when one
of ZA (Fig. 4.33). We have

DAX= — - £4BAD=— - ZCAK = £LXAK. a
X 2 2

Theorem 25. If the internal b.isccwr of LA
between ZAXB and ZAXC is the same as U

of AABC meets BC at X then the difference
he difference between ZB and ZC.

<l LC+ 24,
Proof. We have ZAXC=ZB+ =5 and ZAXB = 2

Therefore ZAXB— ZAXC= 4B~ ZC.



Theorem 26. In AABC, if the i | and external bi of ZA meet the cj le
at X and Y, then XY is a circumdiameter perpendicular to BC.
Y
A= P
F ‘ E
" <\
Sl LN
X B D C
Fig.4.35 Fig. 4.36

Proof. Since equal arcs subtend equal angles at the circumference, ZBAX = ZXAC
gives arc BX = arc XC (Fig. 4.35). Therefore the diameter X¥* of the circum circle
should be the perpendicular bisector of the chord BC. Now, XY is a diameter implies
that AY’ L AX. This means that AY’ must be the external bisector of ZA. Hence ¥
coincides with Y and XY L BC. 4
If ABCis atriangle with D, E, F as the midpoints of the sides BC, CA, AB respectively,
then ADEF is called the medial triangle of ABC.
Theorem 27. A triangle and its medial triangle have the same centroid.
Proof. The median AD of AABC also bisects the side £F of ADEF ( Why?). Therefore
DY is a median of ADEF ‘Fig. 4.36). Similarly £Z and FX are also medians of A DEF.
Thus G is the centroid of ADEF as well. g

Theorem 28. If m,, my, m_ are the lengths of the medians of AABC, through A, B, C
respectively then

2
2m} =b2+12—07.

2 2
2m,f=8+u1_% - 2,,,(2=”3+b2_%.

where a, b, ¢ are the lengths of the sides BC, CA, AB of AABC.

Fig. 4.37

—

Proof. Let AD be the median through A and AX the altitude through A. We use

py;hagmas‘smeoremrepeawdly.
We have AB? = AX + XB? = (AD? - DX?) + XB? (Fig. 4.37)
=AD? + (DB - DX)* - DX*
=AD? + DB?-2DB - DX.
i = 2DC - DX
Similarly, AC* AD*+DC* + .
Axddingwg get AB? + AC? =2AD? + 2DB? (since DB = DC)
BC
or 2AD’=ABZ+AC7—%(BC°)asDB=—2—
P a
ie. 2m; =’72*02—T-
L 2 _pep-S. O
Similarly 2mf=c’+a’-7 and 2m} =a@*+ b 5

3
Corollary 1. 1. m:+m:+m}=z(bi+¢2+a2)

2.GA1¢GBZ+GC"=§(I>’¢:’+¢2)

where G is the centroid of AABC.
Proof. 1. Follows immediately from Theorem 28.
2. We have GA = (2/3) m,, GB = (2/3) m and GC = (2/3) m...
GA? + GB? + GC2 = (49) (m +m +m?) = (13) (@ + b + ). a
i int i then
Corollary 2. If P is any point in the plane of AABC ) .
PA? + PB? + PC? = GA? + GB? + GC? + 3PG* where G is the centroid o‘f A:ABC.
Proof. Let X be the midpoint of AG. (Fig. 4.38). The median PD of APBC is given by
BC? )

2PD* = PB* + PC* - =N

Fig. 4.38

The median PG of APDX is given by i
2PG? = PD* + PX* - XD*I2 o)
The median PX of APAG is given by A
2PX? = PA? + PG* - AG2 3



Therefore (1) + ((2) x (2)) + (3) gives
2PD? +4PGP +2PX" = PE? + PC?~ BCYD 4 2PDR 4 2PXA - XIP + A+ PGP - A
Therefore, PA? + PB? + PC? — 3PG2 = BC2/2 + X° + AG2
=BC2 + AG* + AG¥/2 (since XD = AG)
=BCH2+(312) AG? -
Similarly, if we consider the other medians BE and CF,
weget  PA%+ PB4+ PC2-3PG2=CAYD + (3/2)BG? and
PA+ PB4+ PC2— 3PG*=ABY2 + (31R)CG2.
Adding we get,
3(PA%+ PB? + PC2 - 3PG?)

1
= 5 (BC*+ CA? + ABY) + 32(BG? + CG? + AGY)

l .
=5 (3(GA? + GB? + GC?)) + 312 (GA® + GB? + GC?) (from Corollary 1)

=3(GA? + GB? + GC?).
Hence PA?+ PB2+ PC? - 3PG2 = GA? + GB? + GC2. a
Corollary 3. If R is the ci dius and S is the cir of AABC
then SG? =R~ (19) (4 + b2 + 2).
Proof. Take P = S in Cor. 2 to get

SA? + SB? + SC? = 3R? = GA? +GB*+ GC? + 35G?

=(13)(@ + b? + ¢?) + 35G?

Therefore SG? = R* - (19)(a? + b2 + ¢2). 8]
Theorem 29. Inany AABC, if £B > £ C then the internal bisector BE of Z£Bis shorter
than the internal bisector CF of £ C.

Fig. 4.39

Proof. Since £B > £C, LABE = £BI2 > £C/2 = ZACF. Let X be the point on the

segment AE such that ZXBE = ZACF. Now, BE and CF meet at / the incentre of

AABC. Let BX meet CF at L. By construction, AXBE and AXCL are equiangular and
BE _BX

hence similar. Therefore — = —.
! CL CX

Jaauarm-Crass (]

28
InAXBC. we have ZXBC= T+§>—‘—C+% = ZXCBand hence XC> BX.

2 2
BX _ BF
Therefore 1 < xXCocL or BE<CL.
Hence BE < CL<CF. Q

Another proof of Theorem 29 We use again the same figure Fig. 4.39. By construction
/LBE= ZLCE and hence the four points L, B, C, E are concylic. We have,
/C=£BCE< % (£B+£C)=£ZCBL< % (LA + ZB+ £C)=90°, (Fig. 4.39)

Therefore £ BCE < £ CBL < 90° and the chords BE and CL of the circle BCE subtend
different acute angles on the circumference of the circle. This implies that BE # CL;
also the shorter chord being farther from the centre, subtends a smaller acute angle at

the circumference. Hence BE < CL. But CL < CF and therefore BE < CF. a
Corollary. If two internal bisectors of a triangle are equal, then the triangle is isosceles.
(s]

Proof. Immediate from the theorem.
Theorem 30. The external bisectors of any two angles of a triangle are concurrent
with the internal bisector of the third angle.

Proof. Let the external bisectors of B and £ C of AABC meetatl, (Fi'gA 4.40). Then
the distances of /, from BC and AB are equal as /, lies on lhg external bisector of £ B.
Also /, lies on the external bisector of £C implies that the distance .°f 1, from BC and
CA are equal. Thus /, is at the same distance, say r,, from the three sides of the AABC.
Hence /, must lie on the internal bisector A/ of ZA. a

Fig. 4.40

called the excentre opposite to A. Similarly, the external bisec(ors»of
f £ B at a point /, called the excentre opposite

to B; and the external bisectors of ZA and £ B meet the internal bisector of ZC at I,

the excentre opposite to C.

The point /, is e
£Cand ZA meet the internal bisector of

We note that the incentre / is equidistant from the dmmg sides I?C , CA, AB of AAQC.
If ris the distance of / from the sides of AABC then l.hc' cu'c!e with centre I an'd radius
r touches all the three sides of the triangle and is inscr_1bed in the mangl?. It is called
the incircle of AABC. The circle with centre [, and radius r, touches the s'ldes BC,CA,
AB of AABC. It touches BC at a point on the line segment BC, ?vhereas it touches the
other two sides CA, AB at points on CA, AB produceq. The mmle§ Uay ra)s (Ups 1v),
(I, r,) are the three escribed circles known as the excircles opposite to A, B and C

respectively. (See Fig. 4.41).



Fig. 4.41

Theorem 31. The incentre / and the excentre 1, opposite to A divide the bisector AU
harmonically, where U is the point of intersection of the internal bisector of ZA and
BC.

Proof. Itis required to prove that % - A;n . Fig. 4.42.

Consider ABAU. By Theorem 31 of Chapter 3 we have
Al _ BA

i B ‘e £ )
70 = BU ~p_ Since Bl and Bl are the bisectors of ZABU of AABC

B
In fact, we have BU ¢ BV

<
=5 T ig. 4.42). a
ey M GyTy (Fis442) ,
BU & o
BU+UC c+b O BU=BC- =bte
BV ¢
CV-BV b-c

Flg. 4.42

Al _ BA c b+ec
W= BU_ad(bﬂ:)_ a and
Al, BA__ ¢ _b-c
1V "BV adb-c) a

f.As ZIBl,=Z ICI, = 90°, the circle on II, as diameter passes through B and C.
m wuts this circle again at B, (Fig. 4.43) then AB, = AC (Why?).
Therefore Al -Al,=AB-AB,=AB-AC. ) Q
Theorem 33. If the incircle of AABC touches the sides BC, CA, AB of the mnqgle at
XY, ZmenBX=s—b.CY=s-cmdAZ=s—awhcrc7.s=a+b+c‘lhepenmer

{ AABC. _
:’mof ‘We have AZ = AY, BZ = BX and CX = CY. (Fig. 4.44).
Therefore BZ+BX =BA+BC-AZ-CX
=BA+BC-AY-CY

=c+a-b.
Therefore 2BZ=2s-2borBZ=s-b=BX ”
Similarly we get CY=s-candAZ=s-a.

i f
i i i A touches the sides BC, CA, AB of
34, If the escribed circle opposite to a e . o
I:gg z::‘ Xo» Yau Z, respectively, then AZ, = AY,=s=BX,=BZ=CYc CX,. (wi
obvious meanings for Xp, Yp, Zeo X Yoo and Z,).

C

Fig. 4.44
Fig. 4.43 g

a ™ i B,
Proof. We have AY, = AZ, BX,=BZ,and CY,= CX,, being the tangents fromA, B, C
W .

1o the escribed circle (/g a)-

c =AZ,+AY,
et e = A?+ AC{+ BZ,+CY,=AB + AC +BX,+ CX, R
=AB+AC + BC=2s. ) '
Theref AZ, = AY, = s. Similarly we get BXy=BZ=5=CYc=CX. J
erefore ; bl
Corollary. BX,=BZ,=s5-¢} CX,=CY,=5s

= —-AB=s-cand
Proof. We have BX,=BZ,=AZ, AB=s



Fig. 4.45
CX,=CY,=AY,~AC=5s-b. Q
Definition 3. Two points on a side of a triangle are isotomic points if they are equidistant
from the midpoint of this side.
Theorem 35, The points of contact of a side of a triangle with the incircle and excircle
corresponding to this side are two isotomic points.
Proof. In our usual notations, we wish to prove that
BX = CX,, AY = CY, and AZ = BZ,. (Fig. 4.41).
We have BX = s — b and CX,, = 5 — b (Theorem 33 and Corollary to Theorem 34),
This means that X and X, are isotomic points. Similarly, Y and Y, are isotomic points
on CA and so are Z and Z, on AB. Q
Corollary.
DXX,=b-c,YYy=a-c,ZZ.=a-b
(i) ZZ,= YY, = a; ZZ, = XX, = b; YY, = XX, = c.
Proof. () XX,=BC-BX-CX,=a-2(s-b)=b-c.
Similarly, YY, = a - c and ZZ, = a - b. (Fig. 4.41).

(i) ZZ, — ZB + BZ, = (s - b) + (s - ¢) = a. Similarly we get the other

equations. J
Theorem 36.

(1) X, and X are isotomic points on BC: ¥, and Y, are isotomic on CA and Z,
and Z, are isotomic points on AB. Further X,X, =b+c¢.Y.Y,=c+aand
ZZy=a+b.

@ YY=22=a.

Fig. 4.46

Gaerm-Omass s

proof. 1. We have BX, = CX.~a=s-aand CX, = BX, - a = s - a. Therefore X, and
X, are isotomic points on BC. Furthermore, XX, = X,C + CB + BX. = (s —a)
+a+(s—a)=2s-a=b+c. Similarly we get the ding relations for
the other sides.

2. Y)Y =CY. = CYy =5~ CY, =5~ CX, = s - (s - a) = a. Similarly, Z,Z, =a.
[=]

Theorem 37.
(1) For any triangle the area is equal to the product of the inradius and the
semiperimeter. i.e., for any AABC,
arcaof AABC=A=rs
(QA=r,(s-a)=n(s-b)=r.(s-c).

Proof. (1) If 7is the incentre of AABC, we have

Area of AABC = area of ABIC + area ACIA + area AAIB. (Fig. 4.41)
=(1R)ar+ (1) br+(12)cr=rs
Thus A=rs.
(2) We see from Fig. 4.41 that
Area AABC = arca AABI, + area AACI, — area ABCI,
= (12)cr, + (112)br, - (V2)ar, = (1/2)(b + c —a)r,
=(s-ay,
Thus A = (s — a)r,. Similarly we obtain
A=(s-b)ry,
A=(s-0O)r.. a
Theorem 38. rr, = (s =b) (s = ¢)

Fig. 4.47

Proof. We have  ZIBX = £IBl, - £1.BX,
=90° - £I,BX,= £Bl X,
Therefore the right triangles /BX and Bl X, are similar,

X BX, r _s-c¢
L f —=
and BX 1LXx, Ts-b 1,
LE rry=(s=b)s-¢) =]
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Theorem 39, Areaof AABC=A= ,/.\(: —a) (s —-b) (s~ c) (known as Hero's formula)
Proof. We have seen that r=A/sand r,= Als—a
2

Therefore = —
s(s-a)

Ta

- But by Theorem 38  rr, = (s - b)(s ~ ¢).

A |
m=(s-b)(s—c)orAz=$(S"a)(“b)(“‘c>' Q
Corollary. (1) rrgryr.=A?

This gives

(2) —+—+—
Ta T

A A
§ S$-a

A
§=c

Q) rrgryr. = -

s=b
At

N GG A? from the theorem.

2) l<Fl+l=m+("b)*,(.t-c)
o T A A A
g B-@tb+o) s 1
Theorem 40. F 2 AT -
rem 40, For any triangle ABC, i i .
Y, Zrespectively, l.he{. gle ABC, if the incircle touches the sides BC, CA, AB at X,

areaof AABC _ 2R
arcaof AXYZ 1
where R is the circumradius and 7 is the inradius of AABC.
. Proof. The quadrilateral AZIY is cyclic (Why?) See Fig. 4.48.
Therefore £BAC + £YIZ = 180°
So, by Theorem 36 of Chpater 3, we get

AYZ _ Y.z _r*_er’

AABC ~ AB.AC bc abc

Similarly AlZX _brt o AIXY _ar’
AABC ~ abc  AABC abc

Adding weger AXVZ _ rPa+b+c) _2sr’ _2Ar _ r

AABC abe abc  4RA 2R
(From Theorem 37 and Cor. to Thm. 21 of Ch. 4)
This saBe 3k
AXYZ r =

Fig. 4.48
Proof. We have A = (112)ah, = (112)bh, = (112)ch,.
Therefore 2A = ah, = bh, = ch,; which gives
TN N T AP . s a
W/ (k) (k) (k) (lh,+1hy+1/h)
Hence 1=L+L+L
r h, h h
L. 4.3 s & M
3 —4—t—=—t—+—
Corollan R b kR

Proof. Follows immediately from the Corollary to Theorem 39 and Theorem 4. Q
Theorem 42.
Proof. Let the circumcircle of AABC meet the line All, at P. Then the centre of the
circle 1B1,C on 11, as diameter lies on 11, as well as the perpendicular bisector of BC.
The arc BP and the arc PC make equal angles atA implies that P is the midpoint of arc
BC. Hence P lies on the perpendicular bisector of BC. This means that P must be the
midpoint of /1, Let PQ be the circumdiameter of AABC through P. Let IK be parallel
to BC meeting 1,X, at K (Fig. 4.49) and meeting SD at L. Then we have,

PD + DL = PL = (1/2)IK (since PL|| 1,K) = W21 X, + XK)
Also DL = X,K = r. (Fig. 49).
Therefore PD = (12)(IX, + 1) = r=2)r, - ) (since 1.Xa=Ta)
Just as we observed that P is the midpoint of //,, we can prove that Q is the midpoint of
Il Also,

Fa+rptro=r+ 4R

DQ = (112)UpXp + 1X) = (12)ry + 7).
& ZR=PQ=PD+DQ=(l/2)(7a+'a+’r")
andhence  r,+rp+r =4R+T. a



A

P
l-
Fig. 4.49
Corollary. 5D + SE + SF = R + r (Fig. 4.49).
Proof. SD=SP-DP=R-DP =R~ (12)(r,~1)
o (as in the proof of Theorem 42)
Similarly SE=R - (V2)ry—r)and SF=R— (112)(r.~ 1)
Therefore  SD + SE + SF = 3R ~ (12)(r, + ry + r.~3r).
=3R-(2)r+4R-3r)=R+r. Q
Theorem 43. (Euler’s Theorem).
If d is the di the ci and the incentre of a triangl, R
B a triangle then SF°

Proof. We have Al - IP=1J - IK = (R + d(R - d) = R* - d". (Fig. 4.50).

As we have seen in the proof of Theorem 42, P is the centre of the circle /B/,C and
hence PI = PB = PC. Therefore Al - PC = R* — d*. Now, the right triangles A/Z and
QPC are similar, since £ZIAZ= Z PAB = £ PQC (Why?). This gives All/PQ = IZIPC or
Al- PC=PQ - IZ Thus R? - d* = 2Rr or d* = R* - 2Rr.

Theorem 44. (S, = R + 2Rr, (SI;)* = R? + 2Rr, and (SI.)* = R* + 2Rr,
Proof. Exercise.

Corollary. (/1,7 = 4R(r,— 1), Iy 1)* = 4R(ry + 1,).

Proof. We use Fig. 4.49. For the triangle S//,, SP is a median.

Therefore, SP + SB.=2SP* + (12)11 2.
This gives R2-2Rr+R*+2Rr, = 2R* + (112) 11}
Hence H2=4R(r,-1)

S

[ioue-Onass,

L
similarly, for the ASI, I, SQ is a median and so
SIF + SI2 = 2502 + (121,12
Therefore R +2Rry + R? + 2Rr. = 2R? + (172) JAE
Hence Il2=4R(ry+ 1) a
4
F
E
Fig. 4.50 Fig. 451

Theorem 45. If the line of centres for the two circles (S, R) and (/, r) satisfy
SI? = R? - 2Rr then an infinite number of triangles may be found such that (Z, r) is the
incircle of each one of them and (S, R) is the circumcircle of each one of them.
Proof. From any point A on the circles (S, R) draw the two tangents AB, AC to the other
circle (I, R) meeting (S, R) again at B, C (Fig. 4.50). If Al meets the circle (S, R) at P,
then SP2 = R2— 2Rr implies that Al - IP = 2Rr (Why?). If Z is the foot of the perpendicular
from / on AB, then the triangles A/Z and QPC are similar. Therefore Al - PC=PQ - 1z
=2Rr. This means that Al - IP= Al - PC =2Rr and hence IP = PC. As we have already
seen in the proof of Theorem 42, for AABC, the point P must be the midpoint of the
line joining the incentre and the excentre opposite to A; and we have PB = PC=Pl,
Now 1 lies on the internal bisector of ZA (Fig. 4.50) and PC = PIimplies that / must be
the incentre of AABC. Since we have infinitely many choices available for A, there is
an infinity of triangles having (/, r) as the incircle and (S. R) as the circumcircle. Q
Theorem 46, Let ABC be a triangle with AD, BE, CF as the altitudes and H the
orthocentre. Then AH - HD = BH - HE = CH - HE.
Proof. The right triangles BHF and CHE are similar since ZFBH = ZECH (the
quadrilateral BCEF is cyclic) (Fig. 4.51). Therefore,
HF _HE . CH.HF=BHHE
BH CH

Similarly, ~ AH-HD=BH-HE  ° a

" Note, The same proof works when AABC is obtuse angled and H lies outside AABC.

Corollary.  HA-HD= (I2)(@* + b2 + &) - 4R%.
Proof, We have HA - HD = HB - HE = Power of H with respect to the circle on BCas
diameter. (Fig. 4.52). Therefore, we get
HA - HD = (al2)! - A'H? W
Now, HA’ is the median through H for AHBC. Therefore, :
HB? + HC* = (12)a* + 2(HA)? @



If AP s the diameter of the circumcircle through
e igh A, then CP L AC and hence BH
Similarly, CH || PB. This means that BPHC is Ly

ey a parallelogram and BH = PC. This
{ HB = PC* = AP* - AC* =4R? - b}
Similarly HC? = PB? = AP? - AB* =4R? ~(2} 9
From (1), (2) and (3) we get,
HA - HD = a*/4 - (HB2 + HCY2 - a¥/4) = a*(2 + b*12 + ¢¥/2 — 4R? Q
Theorem 47. Tl\_eChoni CX of the ci ircle of AABC p dicular to BC is equal
10 AH, where H is the orthocentre of AABC.

Proof. CX L BC implies that BX is a diameter of the circumeircle of AABC. Therefore

£BAX =90°. This means that AX L AB and so AX || HC. Similarly, AH || XC. Therefore
AHCX is a parallelogram and CX = AH.

Fig. 4.52

Fig. 4.53
Corollary. AH =25A".

Proof. In ABCX, S and A’ are the midpoints of the sides BX and BC respectively,
Therefore 2SA” = CX and hence by Theorem 47, AH = CX = 2SA”. Q
Theorem 48. In any triangle, the circumcentre, the orthocentre and the centroid are
collinear. The centroid G trisects the line joining the circumcentre and the orthocentre.
(This line is called the Euler line of the triangle).

Proof. Let the median AA” of AABC meet the line SH at G, where § is the circumcentre
and H is the orthocentre of AABC (Fig. 4.53). The triangle AHG is similar to the
triangle A’SG and therefore,

AH_HG _ AG

SA” G GA
But 25A’ = AH (Corollary to Theorem 47) and hence AG/GA” = 2. This means that G
must be the centroid of AABC. Again, the above equation tells us that G trisects SH.
Hence the theorem. u]
Corollary 1.
(1) SH* =9R? ~ (@ + b* + ¢?)
(2) GH? = 4R? - (4/9)(@* + b* + )

rmof.WehaveSH= 35G and GH = 2SG. By Cor. 3 to Theorem 28, Ch. 4 we have,
§G# =R - (119)(@ + % + %,
Therefore, SH? =95G? = 9R? - (a + 1% + ) and
GH? = 4SG? = 4R? - (419)(a® + B2 + 2). u]
Corollary. 2 HA? + HB* + HC? = 12R? - (a* - b? + ¢%).
proof. By Cor. 2, Thm. 28, Chapter 4, we get
HA® + HB? + HC® = GA* + GB* + GC? + 3GH?
2 2 2
= "—”’ai +3GH? (Cor. 110 Thm. 28)
2 2 2
=%+ 1282 - (413) (@ + B2+ )
=12R* - (@ + b+ D) a
Note. We have already seen in the proof of Corollary to Theorem 46 that HB? = 4R? - b?,
HC? = 4R? — C* and HA® = 4R? - a2, Therefore, HA? + HB® + HC? = 12R% - (a® + b* + A )
Theorem 49. If the altitude AD of AABC meets the circumcircle again at D', then Dis
the midpoint of HD" where H is the orthocentre of AABC. In other words, (h'e line
segment of the altitude extended between the orthocentre a_nd l.he other point of
intersection with the circumcircle is bisected by the corresponding side of the triangle.
Proof. We have BH and HD perpendicular to CA and BC respectively, and so £ZBHD
— ZACB. Also, ZHD'B = ZAD'B = ZACB (angles in the same segment). Therefore
/BHD = ZHD'B and so BH = BD'. Now BD L HD imaplics that HD = DD". Q

Fig. 4.54

Corollary 1. BD - DC =AD - HD
P’roof. By the secant property of the circumcircle we get BD - DC=AD - DD'=AD- Hg
(by Theorem 49). ) ) )
Corollary 2. The circumcircle of AHBC is equal to the circumcircle of AABC (i.e.,
they have the same radius). )
“roof. The triangles HBC and D’BC are congruent (Why_?). Therefore, their
circumcircles are equal circles. But the circumcircle of AD'BC is the same as lhal?-'f
AABC. Hence the result. ) |
\tinition 4. If D, E, F are the feet of the altitudes of a mafngchBCon the corresponding
sides then ADEF is the orthic triangle (ot the Pedal triangle) of AABC.




T!leomn 50. The three triangles cut off
triangle and the given triangle itself are mutually similar.

Pmnnd éf-‘;l';xtesquzd:i(l:aale_[m‘l'::‘fl:‘f' (Fig. 4.55) is cyclic (Why?) and hence ZLAEF=ZABC

= A fore AAEF ||| AABC. Likewi
v Nich ] ewise one can prove that ABDF&
Tt_-:or'em SL.Ais !he midpoint of the arc F’E of the circumcircle of AABC; Bis the
midpoint of the arc F’D’ and C s the midpoint of the arc B'E’, where I, ', F* are the
I;:l:;s Wwhere the altitudes AD, BE, CF meet the circumircle.
f.Weno(elhaleB£=4FBE=4FCE=AF’ i i
gy i CA since the quadrilateral BCEF

c.T arc AE’ or A is the midpoint of the arc F'E’ of i
ABC. Similarly, we get the other results. = e c"cll]e

Gt e T, o Pre.Coisoe Wanenacy

from a given triangle by the sides of its orthic

Fig. 4.55
Corollary. The radii of the circumcircle throu,

. gh the vertices of a triangle are
perp to the ing sides of the orthic triangle. In other words SA L EF,
SB L FD and SC 1 DE (Fig. 4.55).

Proof. E and F are the midpoints of HE' and HF” (Thm 49) and therefore EF || E'F’
and EF = (1/2)E'F’. Now by Theorem 51, SA bisects the chord E'F” and SA 1 E'F.
This implies that SA L EF. Q

Theorem 52. The orthocentre of an acute angled triangle is the incentre of the orthic
triangle.

Proof. We again use Fig. 4.55. The line BE’ bisects Z F’E’D’ since arc BF’ = arc B’
Now EF || E'F” and ED || E'D’ implies that BE bisects £ DEF of the orthic triangle.
Similarly AD bisects £ FDE and CF bisects £ EFD. Therefore, H is the incentre of
ADEF. a
Corollary. The sides of a triangle bisect externally the angles of its orthic triangle.
Proof. The sides of a triangle ABC are perpendicular to the altitudes, which are the
internal bisectors of the angles of the orthic triangle. Hence the sides of AABC are the
external bisectors of the angles of its orthic triangle ADEF. a
Note. We observe that the quadrilaterals BDHF, HDCE, and BCEF are all cychc. Therefore,
we get
ZFDH = £LFBH = LFBE = ZFCE = ZHCE = ZHDE

(Angles in the same segment).

. DH bisects £FDE of ADEF. Similarly, EH bisects £ DEF and hence H is the

ncentre of ADEF.

mnmsS.Wuhtheusunlnomiom,AH+ r,=BH+r,=CH+r,=2R-+ roo
£. As in the proof of Theorem 42, we have r,— r=2(SP-SA") where Pis lhe7poml

where SA” and Al meet on the circumcircle. But 2SA” = AH (Cor. to Theorem 47).

AH + r,—2SP + r=2R + r. Similarly we get -
BH+ry=2R+r=CH+r..
Theorem 54. If ABC is an acute-angled triangle and DEF is its orthic triangle then
EF  FD DE_R+r

BC CA AB r

Fig. 4.56

Proof. The triangles AEF and ABC are similar.

EF _ Circumference of AAEF _ AH =_2£A_
BC Circumference of AABC 2R 2R
FD _SB DE_SC

Similarly CA- R AB R
EF FD DE _SA'+SB'+SC' _R+r a
. EF FD DE _SA¥T 7o -——.
Adding B ca* aB R R

Theorem 55. Perimeter of the orthic triangle of AABC is
2 area of AABC

R
Proof. As in the proof of Theorem 54,
S FD‘ECAandDE=S—q‘AB
EF="5 BCFD="% R
Perimeter of ADEF = l; (SA”. BC + SB'. CA + SC' . AB)
= I—R 2(ABSC + ACSA + AASB)
= - area of AABC.
R
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Theorem 56. (The Nine-Point Circle Theorem).
The feet of the three altitudes of any triangle, the midpoints of the th i
e e points of ree sides and

hy to the three vertices all lie on 5
Further the centre of this circle bisects

circle of radius equal tovhnlf the circumradius.
the line joining the orth and the ci

C

Fig. 4.57

m;ﬁp&i :fb;cl'h;:u‘::f:: all.i_ludcf from A, B and C of AABC; l_cl ALB.C

. CA, pectively; H be the orthocentre, § the circumcentre
and Py, Qy, R, be the midpoints of AH, BH and CH respectively. Itis required to prove
that D, E, F, A", B', C’, P}, Q. R, all lie on a circle with centre N the midpoint of the
segment SH, and radius R'2. We have C'B’ || BC and QR || BC, since Q, and R, are
the midpoints of the sides HB, HC of AHBC, Also C’B’ = QR, = (1/2)BC, Again from
AABH, we get C’'Q, || Aif and C'Q, = (1/2) AH.

From AACH, we get B'R, || AH and B'R, = (1/2)AH.

Thus C'Q, || B'R, and C’Q, = B'R, = (I12)AH.

AH is perpendicular to BC implies that C’Q, is perpendicular 0 Q\R,. .. B'C’
QiR, is a rectangle. Similarly C'A’R,P,. and A’B’P,Q, are also rectangles. Hence P,
C’, 0. A, Ry, B all lie on the circle having A’P,, B'Q, and C’R, as diameters.

Also ZA'DP, = 90° implies that this circle also passes through D. Similarly, it
passes through £ and F as well. Thus the nine-points A", B, C’, P,, Q,, R,, D, E. F, all
lie on a circle. The radius of this nine-point circle is (1/2) AP,

From the parallelogram AP, A’S we get R=SA = AP,
The radius of the nine-point circle is R/2.

It remains to prove that the centre N of the nine-point circle is the midpoint of SH
We have (A", Py), (B', Q)), (C’, R,) as three pairs of diametrically opposite points on
the nine-point circle. Therefore the triangle A’B’C” can be obtained from A P,Q, R, by
a half turn (rotation through 180°) about the centre of the nine-point circle. Under this
rotation, the triangles A’B’C” and P, Q, R, get interchanged and hence their orthocentres

also get interchanged. The orthocentre of A P, Q, R, is H and the orthocentre of AA’B'C’
is §.

‘herefore H and § correspond with respect to a half turn about the centre of the
gine-point circle. Hence the midpoint N of HS is the centre of the nine-point circle.

Note. 1- The circumcentre, orthocentre, centroid and the nine-point centre all lie on the Euler
line. G trisects SH and N bisects SH . § and N divide GH harmonically in the ratio
2: 1
2. The fact that the nine-point centre bisects SH can also be seen as follows, P;HA'S isa
parallelogram and hence the diagonals bisect each other. So the midpoint of SH must
be the midpoint of A’Py, which is the centre of nine-point circle of AABC.
Theorem 57.The sum of the powers of the vertices of a triangle ABC, with respect to
its nine-point circle is (1/4) (a* + b* + ¢%).
Proof. The power of A with respect to the nine-point circle is
AE - AB’ = AF - AC’ (Fig. 4.57).
Power of A with respect to the nine-point circle is

b c
=(1/2)(A£4AB‘+AF-AC')=(1/2)(AE';“F'5]

=(1/4) (b AE + ¢ AF)
The sum of the powers of A, B, C with respect to the nine-point circle
=(1/4) ((bAE + c AF) + (c BF+a BD) + (a DC + bCE)}
=(14) (P + 3 +a?). a
Corollary. NA? + NB? + NC? + NH = 3R?
Proof. Power of A with respect to the nine-point circle is
RY R
AN? - (;) =AN*- z
Sum of the powers of the vertices with respect to the circle (N. R2)
=(14) (@ + b + )

> 2 2R
=NA?+ NB*+ NC* -3
L s R SH
NAZ + NBE+ NC?+ NH? = (14)(@ + b + &) +3 7=+ =~
2 ; QT e
. 3R IR (@ 4B+ D)
='.l;(a:+b3+c‘)+—4—+-————4—-——— 3R
a
(From Cor. 1 to Theorem 48) ) A i
Theorem 38. All triangles inscribed in a given circle and having a given point
¢ nine-point circle.
orthocentre, have the same nine-point cm.‘ ) —
Proof. All these triangles have the same circumcentre S anlhd lh?dsani\:lzrf\.\;ﬂ' S
Therefore they have the same nine-point centre ﬁ,.na:ldyd- :;2‘{ K;  oaeiele, O
f i int circle is R/2 where R is the racii 3
the radius of the nine-point circle is | ; givel o
Theorem 39 b cuerbach™s Theorem). In any triangle, the nine-point circle to
the incircle and the three described circles.
n i . ine-point
I:—I:: Proof. We assume £ B> £ C. Let A'T be the tangent (Fig. 4.58) to the nine-poin!

circle at A”. Then we have /CA'T=ZLCA'B - LBAT=£4B~ / B'C’A’ (angle between



lchadlndllxngml=|ngleinﬂndmmsegmcm).:éﬂ—éc(NolellulAA'B’c'
is the medial triangle) (§))
%

Let AT meet BC at U. We have ~— =L (Fig. 4.59)
ul, 1,

. The transverse common tangents to the incircle and the excircle (I, ;) meet ar 17
(Theorem 14). o

Hence if UP, and UP,” are the tangents to the incircle and the excircle opposite to 4
from U then P\UP/’is a straight line.

Fig. 4.58 Fig. 4.59
ZAUP; = ZBUA (since UP,, UB are tangents to the in circle).
=ZLCAU+ £ZBCA = % +ZC.

£ZP\UC = 180° - ZBUP; = 180° - 2ZBUA
=180°-(LA+2£C)=4B-ZC 2)
UP, || A'T from (1) and (2).

Let A’P; meet the incircle again at Q . AU divides /, harmonically implies that the
feet of the perpendiculars on BC from A, U divide the feet of the perpendiculars on BC
from /, /, harmonically.

DU divides XX, harmonically and A” is the midpoint of XX, implies that
AP AQ=AX*=A'U-A'D.
~ Py, Q,U, D are concyclic and this gives
' ZA'QD = LP\UA' = LP,UC = £B - £C from (2)
From (1) we get ZA'QD = ZLB - £C=LTA'C

. For the nine-point circle A’T is a tangent and A’D is a chord with ZA'QD =
ZTA’C implies that Q lies on the nine-point circle. Now Q is a common point to the
incircle and the nine-point circle. The tangent at P, to the incircle is parallel to the
tangent at A’ to the nine-point circle. Therefore the tangent at Q to the nine-point circle

’ [
the same angle £ TA’Q, with QP and the tangent at Q to the incircle also makes

ﬂ"‘;’m, angle with QP,. This means that the incircle and the nine-point circle have
':: same tangent at Q or the two circles touch at Q.

Fig. 4.60

Second Proof. As we have already seen in the first proof, we have A'U.AD =A'A)l@ § U'g
s a tangent to the incircle and UPy, UX are symmetric with respect to AU.P f,‘A’P
and AD are symmetric with respect to AU. 'nnerche _UP. L1 ASand h‘ence clilUlP mcﬂ’
adiameter of the nine-point circle. AP, meets the incircle at Q. Let A’P an 1
at V. Then AA'DP ||| AA’VU and we have .
AV-AP=AD -AU=AX=AP,-P\Q.

is means that V, P, P, and Q are concyclic. ) o
““Sso. £ PQP, = £P,VA’=90° and PQ 1OPA". Her:ce Q lies on the nine-point cucil:
for which A’P is a diameter. The lines P\IM and A’VP are parallel and hence Q

Fig. 4.61



R _
collinear with the midpoints of P

coll M and A’P. But P,M and A’ i

: ks Py ] 1M a AParedmmclersonh
anclrc( ) ne-point circle; and Q lies on them implies that the two circles louc;
Third Proof. Let PR be the

(Fig. 4.61). Let A7 meet BCat U; Xbe i
3 g the point of conta inci i
i \ LBC b ct of the incircle with
e lhex meet l::: nune-point circle again at Q. Let AD be the altitude lhmughz: Nifv?:
perpendicular bisector of DA’ and hence arc DP = arc PA’. This implit-:s that
ZPA'D=(112) LAC'D = (172)(£A’C'B - £4DC'B)
) =(l/2)(AA-(180°—2£B))
(since DA'B’C’ is cyclic). Therefore,
ZPA'D=(12) (4B - £C)
ZUIX=ZUAD (= IX |AD)

diameter of the nine-point circle perpendicular to BC

But

LA
=T—(90°-4B)=ﬁ_£
2 2

) 2)
From (1) and (2), £PA'D = £ UIX.
This implies that A UIX Ill A PA’K and hence

XI-PK=UX KA’
Thisgivesf ) 2r-PK=2KA" - UX=DA’. UX (3)
gr;;ﬁ‘:ig?mxx, harmomca'l y (as already seen in the earlier proofs) and A’ is the
AU-AD=AX or A'D (A'X - UX) = A'X2,
Equivalently A’D - UX = A’X (A'D -AX)=AX- XD 4)
Substituting in (3), we get 2r - PK = A’X - XD = PX - XQ (5)
Also

ZXKR =90° = ZRQX implies that XKRQ is concyclic.
PX-XQ=PK KRandso PX-PQ=PK-PR=PK-2p (6)
(where p is nine-point radius of AABC).

From (5) and (6) we get LA Q
P

PQ
This implies that AZXQ ||| ANPQ. Therefore, Q. /. N are collinear and
X NP
Q0 NO= 1.

This says that Q lies on the incircle as well; and this together with the fact that Q, N,
I are collinear implies that the nine-point circle and the incircle touch at Q.
Fourth Proof. We have S = R* - 2Rr
IH: =2 -2R 1, (where r, is the inradius of the orthic ADEF)
SH? = R? - 4Rr, (Exercise)
NP =(172) (SP+ IH?) — NH? (- IN is a median of AIHS)
= (1/2)(R*~ 2Rr + 2r* = 2Rr,) - (1/4)SH*
=(1/2) (R*~2Rr + 2P - 2Rr, — (112)R* + 2Rr,)

()

fgaerm-rass. w27
The incircle and the nine-point circle touch each other. Q
. 1. We have proved that the nine-point circle touches the incircle. In all lhe four M-
Neje: some simple ifications and similar ings imply that the nine-point circle
also touches each of the three escribed circles. .
2. In the third proof, we actually give a construction of the point of contact of the incircle
and the nine-point circle. .
Theorem 60. (Pedal line Theorem). The feet of the perpendiculars _from a _pomt tothe
sides of a triangle are collinear if and only if the point lies on the cll‘CllmCl.l‘:lﬁ- )
Proof. LetAr. B, C, be the feet of the perpendiculars from Papointon th:_cnrcumlz\c
ABC on the sides BC. CA, AB respectively of AABC. P lie.s on the circles ;.CB ld
AB,C.and AB\C). Also PB, PC and PA are diameters of the circles A BCy. 4l‘lh" :rnes
AB\C, respectively (Fig. 4.62). Therefore, ZC,PA, = 180° - £B= ZAPC. This gi

Fig. 4.62
LC\PA=LC.PA,—LAPA.:AAPC—LAPA.:ZA,PC (1))
Also. quadrilateral A,CPB, is cyclic implies that ZAPC=LABC (i:
and quadnilateral AB,PC| is cyclic gives ZCPA=ZLCBA (

(1), (2) and (3) imply that LAB,C=£4CBA and hcnce»Ah B,, C,are col\u:he:rs.ides
Converse. If P is a point such that the feet of the ;_’cr.pcndnculars fro‘m P oi:n; S
BC. CA. AB of AABC are collinear, then P must lie in the open region whicl
one of the angles of the triangle and P must be outside AABC. ‘ _—
Assuming that P is within ZB of AA_BC (Fig. 4.62). we re(l:ra;erur steps in
above proof. Ay, By, C, are collinear implies that ZAB\C=£4C, A .
Now AB,PC, is cyclic implies that ZC,B,A = ZC\PA and the qugd:Ala:ddin ¥ ‘M,M
cyclic gives £ZA,B,C= ZA\PC. Themforle. we ECEL‘A}PC =2Z (|: p,.‘ i 13%)0 “ 43‘
we get ZAPC = ZC\PA,. Now BAPC, is cy.chc implies that ZC,PA; = D
Hence ZAPC = 180° = ZBor Plieson the circle ABC. ) Y
Definition. If Py, Py, Pyare the feet of the perpendiculars fmm apoint P 9::0 dsre s|I 2
of a triangle ABC, then AP, PPy is called the pedal triangle of P, with respect
AA'?:wrcm 60 says that if P lies on the c‘ucumcirclg then l}ne pedal triangle of P gets
degenerated into 2 straight line also known as the S{mon I.mz of P.
Theorem 61, The sides of the pedal triangle of a point P with respect to the AABC are
given by



AP BP !
PPy=a (ﬁ). PPy =b (5) and PPy=c (g)
where R is the circumradius of AABC. o

Fig. 4.63

Proof. Let P\ P, Py be the pedal triangle of P with res;

: P pect to AABC. Dy 2

(51: ;:3() amli P_,Kul:c the diameter through P; of the circle AP3PP, T:;Zg;: 4
3KP; (angles in the same segment) and furth = L KPP = 00" 2

is a diameter). T AQPy= LKPP=90° (- Pk

. AAQP, ||| AKP,P;.

This gives PyPsy = g& KPy= or,

AP, AP, AP (as KP; = AP)
By the same argument applied to AABC we get
CF
re-(t)
AC 2R
Also, from the similar triangles AQP; and AFC we get
P, _FC PP, _AP AP
=% =" and thus 223 = 20 el
AP, ACm us T or P;P;-a(ZR)

Similarly, we get the other sides of the pedal triangle. =]
gomlhry 1. (Ptolemy’s Theorem. See Theorem 22) If ABCD is a cyclic quadrilateral
en

AB - CD + BC-AD =AC - BD.

Proof. Take D= Pin the ‘Pedal line Theorem’, Then the pedal triangle of P degenerates
into a straight line A;B,C,. By the formula derived in Theorem I1.

. APY .. BP CcP
we h: B\C, = (—J A= [— ' =c|—|.
ave WCr=a 2R CiA=b 2R AB =c T
© c.CP+a-AP _ (BP
Now A,B, + B|C, = AC, and hence T—b[ Zk]
ora.AP +c.CP=b.BP.Inother words BC . AD + AB . CD = AC - BD which is
Ptolemy’s theorem. a

Corollary 2. If ABC is a triangle and P is not on the arc CA of the circumcircle of
AABC, then AB . CP + BC . AP >AC . BP.

‘— 29

Proof. By the converse of ‘Pedal line Theorem’, if P is not on the circuma'rclebit
I triangle A, B, C, is non-degenerate, but is a genuine triangle. Therefore A;B;
B,C; >A\C; which gives
' AB-CI’+BC-AP>AC-BP(Seed\eproofofComllny1). .,..“?g
The Simson line of any vertex of a triangle is the allfmdc through ! vertex anc th
:‘:;;n Iine|ol‘ the point diametrically opposite to a vertex Is the corresponding side. This is
immediate from the definition of *Simson lines’. . )
Theorem 62.1f A, B, C, is the Simson line of a point P on the circum le of AABC,
then the triangles PA,B, and PBA are similar. Further,
|. PA.PA,=PB.PB,=PC.PC,
PA.BC, _ PB.CA, _ PC.AB
a b c ) 4
Proof. In Fig. 64, the quadrilateral PCA,B, is cyclic.
. L A\PB; = LA\CB, = ZBCA = ZBPA.

PA PR APBA
22 _ —— (why?) and hence APABy Il .
Also, B, = PA (why?)

This gives PA . PA, = PB . PB,. Similarly PB . PB,=PC . PC,.

CI
. 7 "
Fig. 4.64
This proves (1). 5 -
g AP _»(BP -Jer.
From Theorem 61, we have B,C, = a(_z_R_]. CA, = b(ﬁ)md ABy C(ZR)
Therefore, PABG PA-AP 4 similarly
! a 2R
PB,.C/A, _PB,.PB PCi.AB, _ PC .PC
b - 2R ' c 2R
PA,.BC, PB..CA _ PCi.AB
Using (1), we get ___a = _-_b = —————c a

Theorem 63. If P is a point on the circumcircle of atriangle ABC, then the Simson line
of P bisects the line joining P and the orthocentre of the triangle.



! a parallelogram and PTBK is an is i
(_ng that PTBK is a cyclic quadrilateral). This means that HL = BI?(;’S;?Z;:'::;I;;'E
(Theorem 49, Chapter 4) and EA is the perpendicular bisector of HT. '

Fig. 4.65

- EAbisects perpendicularly the opposite side LP of the isoscel i

: ; | sceles trapezium LHTP.
This means that th‘e S_|ms9n line A B,C, passes through the midpoint B, of PL and it is
parallel to LH. This implies that A,B,C, bisects PH. (Sce Fig. 4.65). .

EXERCISE 4.4

1. Prove that the angle which the exteral bisector of ZA of AABC mak i
[: vith s ha
the difference of ZBand £ C. e

2. If the tangent at A to the circumcircle ABC meets BC at X then prove that XA = XD = XD’
where D D’ are the points where the internal and external bisectors of £ A meet BC
respectively.

3. Let m,, my, m_be the medians through A, B, C of AABC. If XYZ is the triangle whose

sides are of lengths m,, my,. m,, prove that the medians of AXYZ are of lengths 3a/4, 3b/4,
3c/4 respectively (where a = BC, b = CA, ¢ = AB).

4. Let Sbe a given circle and G be a given point. How many triangles are there inscribed in
S and having G as their centroid?

5. Show that a parallel to a side of AABC through its centroid G divides the area AABC in
the ratio 4 : 5.

6. Show that in any AABC, 3s/2 <my + my+m, < 2s.

7. If X is the harmonic conjugate of the eentroid G of AABC with respect 10 A, D (where D
is the midpoint of BC) show that XD = AD.
8. Find the locus of the centroid of a triangle on a fixed base and inscribed in a fixed circle.
9. Iftwo point P, Q are equidistant from the centroid of a triangle ABC show that PA* + PB*
+PC? = QA% + QB? + QC*; and conversely.
10. ABC is a triangle. Find the locus of P if PA? + PB? = PC*.
11. Sis agiven circle and O is a given point. If a variable chord AB subtends a right angle at
0, find the locus of the midpoint of AB.

12. If X, Y, Z are the feet of the perpendiculars from the centroid G of AABC upon the sides
BC, CA, AB prove that area AXYZ = 4A%(a® + b* + ¢?)/9a%h** where A = area of AABC.

13
14.

17.

18.

2

22.

Is the corollary to Theorem 29 true for external bisectors?

With notations as in Theorem 31, prove that any two points X, ¥ of (1, I, Iy, I} are the
extremities of a diameter of a circle passing through the other two vertices of AABC,
not in line with X, ¥.

Show that an external bisector of ZA of AABC is parallel to the line joining the points
where the external (internal) bisectors of ZB, £ C meet the circumcircle.
DP = ris a given line segment. DQ is another line segment in line with PD such lha{D
is in between P and Q: and further DQ = r,.. Let A be the harmonic conjugate ofp with
respect to P, Q. Then prove that AD is equal 1o the altitude h, of AABC for which the
inradius is  and exradius opposite to B is r,.
Deduce from Exercise 16 that h, = rrol(r, 1)

hy=rryf(ry = 1)

he=rrd(re=r).
In a variable triangle inscribed in a fixed circle and circumscribing a fixed circle prove
that the sum of the exradii is constant.

. Prove (a) SP+SIZ + SIf + I = 128

(b) 112 + 113 + 113 =8R(2R - 1)
(c) IIg + 12 + 113 =8R (4R + 7).

. Let ABC be a triangle with incentre / and circumcentre S. If XY is the diameter of the

incircle perpendicular to the diameter PQ of the same circle (/, r) passing through S,
show that the perimeter of ASXY =2R. o )

Let ABC be a triangle with X, ¥, Z being the points of contact of the incircle with nﬁ
sides of AABC. Show that the circles (4, AY). (B. BZ) and (C, CX) are tangent
each other. .
ABC is a triangle; the excircle opposite to A touches BC at X,. Prove that AX, bisects
the perimeter of the AABC. ) ) .
XY is a straight line parallel to BC through the incentre [ of ABC meeting AB, AC at X,
¥ respectively. Prove that XY = XB+YC.

24. ABC is a triangle; PQ. RS, TV are the tangents to the incircle parallel to BC, CA, AB

2.

26.

: R, S; BC, BAat T, Vrespectively. Prove
respectively meeting AB,AC at P,Q.CA.CBatR, §; BC, ! |
(;-\ullxl)\: sum of the perimeters of AAPQ. ABTV and ACRS is equal to the perimeter
5 . that AZ . BX . CY=rA
With usual notations as in the text, prove that AZ.. BX . C¥ = 8.

ABC is a right triangle with ZA =90°. If the incircle of AABC touches BC at X, prove
that, area AABC = BX . XC. . s )
From any point inside a regular polygon per‘pcndlculars are drawn to the sides of the
polygon, prove that the sum of their lengths is a constant.
Prove that area of AABC = area of quadrilateral I,YAf, o
i B, C all lie on a circle.

lfAA=60“mABACvpmv=de,H.l.l,. 3 -

i i ‘A ABatX,, Yy, Z;: the incircle of AX; Yy Zy
The incircle OfAAﬂCINIChb&ﬂ\CSIdCSHC.C ABatX,, I
touches the sides of AX,Y,Zy at Xa, ¥, Zz—:nd hk:w-s: points X, ¥y, Z, are defined for
n>Z.Provcm;u4Y,,X,.Z,,=60°+(—2) (AA—Q). A ) :
A variable straight line PQ cuts two fixed straight lines AB, CD at P, Q: the bisectors of

3 f X.

ZAXYandACYXmeeulx.ﬁndl.helocuso o
In AABC. AD is the altitude through A: x, y, z are the inradii of AADC. AADB and
AABC. Prove that 2 + 32 = 2

ABCD is a quadrilateral circumscribing a circle. Prove that the incircles of AABC and

AADC touch each other.
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Acimleofeonsun(rndiuspuseslhou i i
A igh a fixed point A and intersects two f;
strai i i e
; ghl lines AB, AC in B, C. Prove that the locus of the orthocentre of AABC i 5
35, Two rectangular chords. AB. CD of a circl i
. AB. e revolve about a fixed point P. Show tha
orthocentres of AABC, AABD describe the same circle. it
36. Prove that the Euler line of AABC i i i
F passes through A if and only if the triang],
isosceles or right angled. 4 R
37 lzl PQ be a diameter of the circumcircle of AABC whose centroid is G. Prove that PG
bisects OH where H is the orthocentre of AABC.
38 ABCisatriangle: the tangents at A, B, Cto the circumcircle form APQR. Prove that the
circumcentre of A PQR lies on the Euler line of AABC.
Prove 'dm the circumcentre of AABC lies on the Euler line of AXYZ where X, Y, Zare
the points of contact of the incircle with the sides of AABC.
40. If P, 0, R are the midpoints of AH, BH, CH show that APQR=AA'B'C’ (medial trai
X \BH, traingl
where H is the orthocentre of AABC. B
41. Prove that ADB'C is congruent to APQR (notations as in 40; D is the foot of the
altitude from A).
42, With notations as in 40, prove that SP is bisected by AA” where § is the circumcentre,
43, If lvanable triangle has a fixed base and a constant circumradius, show that its nine-
point circle is tangent to a fixed circle. .
44.  Avariable AABC has its vertex A fixed and has a fixed nine-point circle: prove that the
locus of its orthocentre is a fixed circle.
45. If the pedal line of P with respect to AABC is parallel 10 AS. prove that PA Il BC.
46. Le( the altitude AD of AABC meet the circumcircle of AABC at IV’ Prove that the pedal
line of D' is paraliel to the tangent at A to the circle.
47.  Prove that the feet of the perpendiculars from the midpoint A” of BC to the sides of the
orthic triangle are collinear.
48. Pisa point on the circle ABC and H is the orthocentre of AABC, prove that the pedal
line of P bisects PH.
49. The perpendiculars frora P, a point on circle ABC, to BC, CA, AB meet the circle again
at X, Y, Z Prove that AABC = AXYZ.
50. Let X be any point on the circumcircle of AABC. Let the altitudes AD, BE, CF meet the
circle again at I, E', F'; if XA’, XB’, XC cut BC, CA, ABat P, Q, R. prove that P, Q, R
are collinear with the orthocentre H of AABC and parallel to the pedal line of X.

«

2

4.5 CONSTRUCTIONS

Let us begin with some very basic constructions.
Construction 1. From a given a point in a given straight line, construct a straight line,
making with the given line an angle equal to a given angle.

E A
2 F
G
D c
3 B

Fig. 4.66

Let A be the given point, AB the given straight line and £ CQE be the p‘ven angle.
With D as centre and any convenient radius, draw an arc of the cm:!e meeting DCatP
and DE at Q. With A as centre and same radius draw an arc I of a circle meeting AB at
F. With centre F and radius equal to PQ draw an arc meeting the arc T at G. Then AG
is the required straight line. (Fig. 4.66). ) )
Proof. By construction, the three sides of AAFG are equal in length to the cmcspondx:“gi
sides of ADPQ. Hence the two triangles are congruent. ZLFAG=£PDQ=ZCDE e
AG is the required line.

Construction 2. Let Z BAC be a given angle. Bisect the angle ZBAC. w-;n cle)nuE'eA
and any radius draw an arc of a circle meeting BA at D and AC at E With D, 've”
centres and suitable radius draw two arcs meeting at F. Then AF bisects the given
angle ZBAC (Fig. 4.67). )
Proof. By construction, DF = EF and hence the three sides of AADF are cqu_alzu;;Ab’e:
corresponding sides of AAEF, . AADF = AAEF and this means that Z DAF = i
or AF bisects ZBAC. )
Construction 3. Given a line segment AB, bisect AB.
Choose a suitable radius and draw arcs of circles with centres A an
Y. Let XY meet AB at C. Then C bisects AB. (Fig. 4.68). ”
Proof. By construction, AX = BX =AY = BY. Therefore AAXY = ABXY. Now AAXYE.
Z BXY implies AAXC = ABXC and so AC=BC. ) _ ' . —
Construction 4. To draw the perpendicular to a given straight line from a gw;nB poin
onit. Cis the given point on a given linc AB. Cut off equ'al lengths CD, CE on 3 as ml
Fig. 4.69. With any radius bigger than CD. draw arcs with centres D and E meeting a
X. Then CX L AB. ]
Proof. By construction DX = EX, DC = CE and hence ADCX = AECX.
Therefore ZDCX = ZECX =90°

d B to meet at X and

Q

4 F
D
B
Fig. 4.67 Fig.4.68
(o)
Tx
;—’l—_’_'a D E
X
Fig. 4.69 Fig.4.70
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Construction 5. To draw the di i ight li i
i perpendicular to a given straight line from a given point

Cbcﬂlel given pointand AB the given straight line. With C as cent
arc of a circle meeting AB at D, E. With suitable radius,
centres D and E meeting at X (Fig. 4.70). Then CX L AB.
Proof. By construction, DX = EX, CD = CE. So ACDX = ACEX and £ DCX = ZECY,
Therefore ACDG = ACEG. Hence ZCGD = ZCGE = 90° or CX L AB. Q
Construction 6. Draw a circle passing through three non-collinear points.

Using the earlier ions, draw the dicular bi

: P of AB, AC 1o meet
at §. Then the circle with S as centre and radius SA is the required circle.

tre draw a convenieny
draw arcs of circles with

Proof. § is on the perpendicular bisector of AB and AC implies that SA = SB and SA =
SC. Thus SA = SB = SC or the circle with centre S and radius SA passes through A, B
and C.

A Q

QMMOn 7. To draw a straight line parallel to a given straight line through a given
point.

L)

Fig. 4.71

Fig. 4.72

Let AB be the given straight line and C the given point. With C as centre draw an arc

T meeting AB at D. With the same radius draw an arc with D as centre to meet AB at E.
Now with D as centre and radius equal to CE, draw an arc of a circle cutting " at F,
Join CF and CF is the required straight line parallel to AB.
Proof. By construction CF = CD = DE. Therefore ACDF = ADCE. This means that
ZFCD= £EDC. These are alternate angles for the transversal CD cutting AB and CF.
Therefore AB || CF. 5|
Construction 8. Divide a given segment into a given number of equal parts.

Let AB be the given segment to be divided into n equal parts. Draw through A any
convenient ray AC. Along AC cut off equal segments AA”,, AA%, ASAL, .. A%, A,
Draw straight lines through A”), A", ..., A’,_; parallel to A”,B meeting AB at Ay A; ...
A, respectively. Then A, A,..., A,_, are the required points of division.

Proof. By the equal intercepts theorem on parallel lines, we have Jd
AA =AA =A== A, B

135

A . A4 4, 4y &

Fig. 4.73

Construction 9. To construct the fourth proportional to three given segments. Given

three segments of lengths x, y, z we wish to find a segment AG suchthatx:y=2:AG.
Draw any convenient angle Z BAC. On AB cut off AD, AE equal to.x, y respectively.

On AC cut off AF = z. See Fig. 4.74. Draw EG || DF meeting AC at G. Then AADFHI

AAEG and hence

AD AP :

AE T AG AG
Thus AG is the required fourth proportional to x, y. z. Q

X
or =
y

Fig. 4.74

C ional to two given segments. Let x
Construction 10, To construct the mean proportional W
and y be the lengths of the two given segments. It is required to find a segment of
length 2 such that ¥/z = /y or 2 = xy.

Fig. 4.75 Fig. 4.76
Draw a straight line AX. On AX, cut off AB equal to x and AC equal to y. (Fig. 4.75).
In our figure we have taken y < x. On AB draw the semicircle and draw CD L AB
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meeting this semicircle at D. (All these i i
: et sl b mc::nslrucm?ns c.an be done using our earlier

Proof. By construction, D lies on the semici 2
N micircle on AB and hence =90°
ADAB Il ACAD and hence AB/AD = AD/AC or x/z = oy. SN
CM,_:::: ll'. Draw a tangent o a circle from an external point. *
e given point and O the centre of the gi i i
et given circle. Bisect AQ and fi
z::;o;u: (lxijO‘ With B as centre and radius BA = BO draw a circle cutting mcmgdlz:
. D, lhcn.AC.AD nre the tangents from A to the given circle. (Fig. 4.76).

Pmol- 90°.Hy ACOisa and hence ZACO=90°. Similarly Z ADi
=90°. Hence AC, AD are the tangents from A. Q
f:::mcdon 12. To draw a direct common tangent to two given circles.
o . But:e the centres of the tw_o given circles with radii, ry, r, respectively. We first
BC(m;f at ry, > . Draw the circle with centre A and radius 7y - ry. Draw a langc;n
: o lls circle [Fig. 4.77a). Let AC cut the circle (A, ry) at D. Draw BE | AD cuttin,

c\rc‘:l(B. ry) at E. Then DE is a direct common tangent 1o the two given c‘u'cle&g
gx[l).‘ ‘e have CD =r) - (r:, ~ry) = r, = BE. By construction CD |l BE and hence
pees isa parallelogram. BC is a tangent to (A, ry — ry) implies that BC L AC. Therefore
= isa reclangl_e and hence £ CDE = £ZDEB = 90°. Therefore DE is a common

g:l.!l to the two circles. When 7, = ry, construct the rectangle ABED on AB to get DE
as a direct common tangent [Fig. 4.77b]. J

S::I:::rutﬁon 13, Draw a transverse common tangent to Lwo given non-intersecting

We imitate what we did in the last construction.
\Y‘nh A as centre draw the circle of radius r, + r,. Draw the tangent BC to this bigger
cgrcle (Fig. 4.78). Let AC cut the circle (A, ry) at D. Draw BE |l DA meeting the
circle (B, ry) at E. DE is a transverse common tangent.
D

(a) ()

\v

Fig.4.78
Proof. ise (similar to the previ ion). Q
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consmlfﬁ““ 144. Through a given point outside a given circle draw a secant so that
the chord determined by it subtends an angle at the centre equal to the acute angle
between the secant and the diameter through the given point. -

Let O be the centre of the given circle and A be the given point outside the circle.
Draw the circle with centre A and radius AO meeting the given circle at Q, o
(Fig- 4.79). Join AQ. Then AQ is a secant satisfying our requirements. :

]
Fig. 4.79 Fig. 4.80

Proof. Let AQ meet the circle again at P. We have 0Q = OP and AQ = AO
(by construction) and ZOQP = £ OQA. Therefore the vertical angles in the isosceles
triangles QOP and QOA are also equal.

So, ZQOP = LOAQ and AQ is a secant satisfying our requirements. Q
Question. Can you replace the adjcciive ‘acute’ by ‘obtuse’ in the above problem?
Can you draw a secant AQ 50 that Z QOP is the obtuse angle between AQ and AO?
Remark. The above problem has two solutions symmetrical about AQ.

Construction 15.Let ABC be a triangle. Find two points P, Qon AB,AC,. produced if
necessary such that the line segments AP, PQ, QC arc all equal.
Draw the circle with radius BA and centre Bto cut AC at X. Draw the circle with centre
X and radius BA to cut AC at Y. Draw the parallel CP to YB meeting AB at P (Fig. 4.80).
Let the parallel to BX through P meet AC at Q. Then P, Q are the required points.
Proof. By construction APQC Il ABXY. Again by construction XB = XY. So, APQCis
also isosceles and PQ = QC. The triangles APQ and ABX are similar and AB = BX by
construction. Therefore AP = PQ. Thus AP=PQ=QC.
Remark

1. The point X is uniquely fixed on AC. We have two symmetric positions for ¥ on

AC and we get two solutions.

2. What happens if ZA =90° in the above construction?
Construction 16.Let S, S’ be two given circles. Find points P, Q on S, S respectively
such that PQ is equal to a given length and PQ is parallel to a given direction. ¢
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Fig. 4.81

mdli-:;: b[;: the lt;lcm'rc of circle S with radius r and B be the centre of circle 8’ with
g iincr::ch lch lalrn,: ‘l‘h_mughf‘\ parallel to the given direction /. Cut off AR on this

i is equal to the given length m. With R i

i f e gth m. With R as centre and radi
oﬁ"é}a’ c_nzl; mecl‘mg §"at Q. Draw the straight line through Q parallel to AR andulZy’
bl g 50 as to form a parallelogram in which QR is a side and not a diagonal
e points P, Q are the required points. )
::;{’thll ! :n'd 1PQI = m are true by construction. The only thing remains to be
e s that P is on the circle S. In the parallelogram ARQP we have AP = RQ. But
NQ = radius of § by construction. Hence, P lies on . - Q

ote. We have two positions of R on either side o i i

W S E f A. The circle with each f the ints
as centre and radius equal o that of S(1) may cut §* at two points (2) may u::"h‘.’flﬂc)\;raxy":;
c(;u S :::'II. Therefore, the problem has four solutions, three solutions, two, one or no solutions.
onstruction 17. Draw a circle i i i » V

- passing through two giv s S i
given angle at a third given point. . USSR

P

(b)
Fig. 4.82

It is required to find a circle through the two given points A, B and subtending a
given angle at C; i.e., if CT, CT; are the tangents to the circle then ZTiCT; is the
given angle, Z P. See Fig. 4.82(a). Take any point Q on the internal bisector of Z P and
draw QR perpendicular to one of the sides of the angle [Fig. 4.82(h)]. Divide AC
internally and externally in the ratio QR : QC to get the points £, F. Similarly divide
BC in the ratio QR : QC internally and externally at G, H. Let the circles on EF and GH
as diameters meet at O. Then O is the centre of the required circle.
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" proot. By construction OA/OC = QRIQC = OBIOC. If CT}, CT, are the tangents to the

cimlefromC then we have
o, 0A QR
L P R A A = OT)).
oc =oc ~gc tin=O »

Now in the right angled triangles OT,C and QRC we have OT,/QR = OCIQC and
hence the two triangles are similar. Therefore ZOCT, = £ZQCR= £ PI2. Hence £ T.CIE‘:Z.

‘= £P=givenangle.

Construction 18. Through two given points on a circle, draw two parallel chords
whose sum will have a given length. ) )
Suppose AD, BC are the two required chords passing through the two given points

. Aand B on the circle § with centre 0. Then the trapezium BCDA being cyclic, is
* isosceles. Therefore CD = BA. Now CD and BA are chords of the same length. So, CD

touches the circle with centre O and radius OF (E is the midpoim' of AB); and the point
of contact is F the midpoint of CD. Also 2EF = AD +BC=2s(given ungm)z Thus we
have the ing ion. Find the int E of AB and dr‘aw the circle with
centre O and radius OF; also draw the circle with centre E and radius s (where 4D+
BC = 25 = the given length) to cut the circle (O, OF) at F. Let the tangent to the culrcle
(0. OE) at F meet the given circle S at C, D (Fig. 4.83). Then AD, BC are the required
chords.

D

Fig. 4.83

Proof. Since by construction, the chords AB and CD are equidistant from the centre,
we have AB = CD. Therefore ABCD becomes an isosceles trapezium, and AD + BC =
2EF = 25 = given length. a
Note. If s > 20E then the circle with centre E and radius s will not cut the circle (0, OE). If
s < 20E, we get two points of intersection F. P’ giving rise to two solutions.
Construction 19, Given a line segment AB and an angle o, construct a segment ofa
circle such that AB subtends angle o at any point on this circular arc.

Draw AT such that £ BAT = a the given angle. Let the perpendicular bisector of AB
and the perpendicular to AT at A meet at 0. Then the arc T of the circle with centre O
and radius OA is the required arc (Fig. 4.84).



Fig. 4.84

Proof. If P is any point on this arc (Fig. 4.84) we have ZAPB = ZBAT = o (by
construction AT is a tangent to the circle (O, OA) at A). Q

Construction 20. Given the base BC, the vertical angle A and the side AC. construct
AABC.

Asin construction 19, draw the segment § of the circle on BC such that BC subtends
ZA atevery point on this arc. With C as centre and radius AC draw an arc cutting the
circular arc S at A. [Fig. 4.84(b)]. Then it is clear that AABC satisfies our requirements. O
Construction 21. Construct a triangle given the base, the opposite angle and the
difference of the other two sides.

Let ABC be the required triangle. Suppose we are given a, A and b — ¢ Take D on AC
such that AD = AB. This makes CD = b - c. Then AADB is isosceles and ZADB =
ZABD =90° - A/2. See Fig. 4.85. Therefore the exterior angle BDC = 90° + A/2. Now
in ABDC, we know the base BC=a, CD = b~ c and £ BDC =90° + A/2. Therefore we
may construct ABDC. Third vertex A lies on CD prod
bisector of BD.

Note.If a > b - ¢, the problem has no solution.

i and on the perpendi
Q
Construction 22. Construct a triangle given the base. the difference of the other two
sides and the altitude to one of these sides.
Suppose we are given BC = a, b — ¢ and the altitude CF = he.

Fig. 4.85 Fig. 4.86

—

Let ABC be a triangle with the required properties. Let E be apoinlon.ABpmdM

ch that BE = b= c or AE =AC. In ABEC, we know BE, BC and the altitude through
w(ﬁg, 4.86). Therefore the ABEC may be constructed. (Note that C must be at a
dcisumcc h, from BE and hence lies on the straight line parallel to BE at a distance hes
from BE). Once ABEC is known, we can fix the third vertex A on EB.
Construction 23. Construct AABC given a, A and b + ¢ (with the usual notations).

Let ABC be a triangle satisfying our requirements. Produce BAto D such that AD =
AC. Now, AACD is isosceles and ZADC = ZACD = (1/2) ZBAC=AR.In ABCD.]?VC
know BC=a. BD =b+cand £BDC = A/2. Therefore we can construct ABDC.A xecs'
on the perpendicular bisector of CD and on BD.

D

Fig. 4.87
Note. If a > b + ¢, the problem ha; no solution. Prove that the problem has two, one or no
solutions.

Construction 24. Construct a triangle given its perimeter. the angle opposite the base
and the altitude to the base.

L] b (remiciceny’ ~

Fig.4.88

« we are given 25, A, h, (usual notations). Let ABC be the required triangle.
Prosc;lu':r:u;C:ll:; f:;yc?m; let B)a((= BAand CY=CA. ThenXY=XB+BC+CY=a+
b+c=2s.

AXAB and A YAC are isosceles triangles.
Therefore ZAXB = ZXAB = (112) ZABC and similarly ZAYC = (1/2) ZACB.
Therefore ZXAY = (1) ZB + LA +(112) AC::O";— L;I: s sl
ed since we know the base XY = 2s,
T;:a?: ,;()),n“fi :el‘lc:::uu‘:: (al\itude h, through A. Also BA = BX and C‘A = CY imply
that B and C lie on the perp lar bi of AX and AY. resp y.
Thus AABC may be constructed. Q
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Note. This problem may have two solutions symmetric about the perpendicular bisector of xy
or just one solution or none at all.

Construction 25, Given a, A, h, + h, (with the usual notations) construct the triangje
ABC.

Fig. 4.89 Fig. 4.90

Let ABC be a triangle meeting our requirements. Produce BE to X such that EX = h,

= CF. Draw XY parallel to CA meeting BA at Y. Then we have
£BYX=Z4BAC=£ZA (corresponding angles).
4£BXY = ZBEA = 90°. Now, in the right angled triangle BXY we know BX = hy, + h,
and the ncuw.mglc £ BYX. Therefore ABXY may be constructed. We observe that if
AZ || BE meeting XY .al Z (Fig. 4.89) then AZXE is a rectangle and AZ = EX. Therefore
AZ=EX=h,, In the right angled triangles ACF and AYZ, we have AZ = EX. Therefore
AZ = EX = h.. In the right angled triangles ACF and AYZ. we have AZ = CF.
ZLCAF=LA.
Therefore AACF = AAYZ; AY = AC = b and hence
BY=BA+AY=c+b.

In the isosceles triangle AYC, ZAYC = ZACY = ZAR. Also ZA = ZAYX implies that
YC bisects £Y. Therefore C is the intersection of this angular bisector of ZAYX and
the circle (B, a). Once Cis fixed, A is d 1 on BY by the dicular bisector
of YC. Q
Construction 26. Given a, A, h.— h,, construct AABC. Again let ABC be the triangle
satisfying our requirements.

Let BE, CF be the altitudes through B and C respectively. Let K be the point on CF
such that KF = BE. This gives KC = h.~ hy,. Let KL Il AB meeting AC at L (Fig. 4.90).
Now the right triangle CKL may be constructed since we know CK and ZKLC = ZA
The triangle ABL is isosceles (why?) and therefore ZALB = 90° - AR. Also ZALK =
180° — A (Fig. 4.90). Therefore LB is the bisector of ZALK. Hence B lies on the
angular-bisector of ZALK and the circle (C, a). This determines B. To fix A, we note
that A is the intersection of CL and the perpendicular bisector of BL. o |
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(Construction 27. Find points, D, E on AB and AC of AABC so that BD = DE = EC.

D, F

Fig. 4.91

Suppose D, E are the required points (Fig. 4.91). Draw AF Il DE meeting BE at F
and FJ | AC meeting BC atJ. From the similar triangles BDE and BAF we get DEIAF
_ BD/BA = BE/BF. But BD = DE and hence AF = AB, Again from the similar triangles
BEC and BFJ we get EC/FJ = BEIBF = BC/BJ; and therefore DE/AF = BEIBF =
ECIFJ. But DE = EC and hence AF = FJ. Thus BA = AF = FJ. The quadrilateral BAFJ
s constructed as follows. Take K on CA such that CK = AB. Draw the parallel through
K to BC meeting the circle with centre A and radius AB at F. Let the parallel to AC
through F meet BC at J. This completes the ion of the quadrilateral BAFJ. AC
and BF determines E. The parallel to AF through E determines D. Q
Construction 28. Given A, a + b, a + ¢ construct AABC.

Let AABC be the required triangle. Produce AB and AC and take points D, E on AB,
AC such that BD = BC = CE (Fig. 4.92). This givesAD =c + a, AE = b + a. This means
that AADE can be constructed, as we know AD, AE and the included angle 44?. Now
find points B. C on the sides AD, AE of AADE such that DB = BC = CE using v.l;:
previous construction.

Construction 29. Construct AABC given the perimeter 2s and two angles B and C.
See Fig. 4.93. Draw XY =25 and £ YXK = ZBand ZXYL=ZC.Bisect mem;les KXY
and LYX and let the bisectors meet at A. Draw AB Il KX and AC |l LY meeting XY at
B, C respectively. Then AABC is the required triangle. .
Proof. By construction ZAXB = ZB/2 and ZXBA = 180° - B : ZBAX = £ B/2 which
means that XB = AB and similarly AC = CY. Thus AB + BC + CA=XY = 2s. Q

Fig. 4.92 Fig. 4.93
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Construction 30. Let ZXOY be a given angle and A a given point. Draw a straight line
through A such that the segment intercepted on it by the sides of the given angle is
divided by A in a given ratio A : .

Take any point C on OY. Find D on AC such that AC : AD =\ : . Draw DP Il YO
meeting OX at P. Then AP is the required line (Fig. 4.94). The triangles AQC and APD

are similar. Therefore AQ/AP = AC/AD = M. Q
A A
Y
C
D
o P! X
Fig. 4.94 Fig. 4.95

Construction 31. Construct AABC given a, A, A’D/A’U where D is the foot of the
altitude from A and U is the point where the internal bisector of ZA meets BC and A”is
the midpoint of BC.

Let ABC be a triangle with the required properties and § be the ci of
AABC. SA’ meets the circumcircle at P. Then AU also meets the circumcircle at P
(Why?). P bisects the are BC. (Fig. 4.95) AADU Il APA’U and hence A’U/UD = APIAD.
Now, BC and £ A are given and therefore the circumcircle of AABC can be constructed.
So, A’Pis determined. Also A’U/UD is known from the hypothesis. Therefore A"U/UD
= A'PIAD gives AD - AABC is readily constructed now. =
Construction 32. Construct AABC given R, b+ ¢, ZB - ZC.

Let AABC be the required triangle. Let AP be parallel to BC meeting the circumcircle
again at P. (Fig. 4.96). Now APCB is an isosceles trapezium. ZABP= ZABC~ ZPBC =
£B-ZBPA=£B- £BCA=£B- £C.Thecircumradius R and ZABP=£ZB~ £C
determine AP (Why?).

Now in AABP, we know base AP, the vertical angle ZABP = £ B~ £ C and the sum
AB+BP=AB+AC=b + c. Hence we may construct AABP. The straight line lhrough
B parallel to AP meets the circumcircle at the vertex C of AABC.

Construction 33. Construct a triangle given the median, the altitude and the bnccmr
from the same vertex (Given hg, m,, 1,)

Let AD be the altitude k,, AU the bisector £, and AA” the median m,. We can

construct the right angled triangles ADU and ADA” using the given data. (Fig. 4.97).
A

7
Fig. 4.96 Fig. 4.97

GroemeGoes -

The circumcentre S lies on the perpendicular to DA’ through A’ such that £ UAS =
£/ DAU. (why?). Once S is determined draw the circle with centre § and radius SA to
cut DA’ at B and C. ABC is the required triangle. a
Construction 34. Construct AABC given the medians m,, my, and m,.

Fig. 4.98

Suppose ABC is the required triangle with A’, B, C’ as the midpoints of the sides
BC, CA, AB respeclively Produce C’ B’ to X such that B’X = C’B’. Then in the
ilateral AXCC’, the di Is AC and C’X bisect each other. Therefore AXCC” is
a pa:allelogram This gives AX = CC’ = m,. From the parallelogram BA’XB’ we get A ‘X
= BB’ = m,. This means that the sides AX, XA’, A’A of the triangle AXA” are m., mg, my
respectively, and can be constructed. To go from AAXA’ to AABC, we observe that XY
is a median of AAXA” (See Fig. 4.98). Therefore the point ¥ can be determined on AA”
and further B', C’ satisfy B'Y = YC’ = (1/3)XY. This means that B, C’ can be located on
XY. From AAB’C, the AABC is readily constructed.
Construction 35. Given the altitude h,, a and the bisector 7,, construct AABC.

¥

B DU X ey
Fig. 4.99

Suppose AABC satisfies our requirements. See Fig. 4.99. Let X be a point on DC
such that BD = DX. Then £ZXAC = LAXD - LACB = £B — ZC (since AABX is
isosceles). As we have seen earlier ZDAU = (1/2) (£ B - £C) (Theorem 24) which is
aknown angle from the right angled triangle AADU. Let the perpendicular at B to BC
meet XA at Y. Then in the right angled triangle BYC we know BY = 2AD = 2h, and
BC = u is given. Now A lies on the perpendicular bisector of BY and also on the
segment of the circle on YC subtending 180° — (B - C) at the circumference (note that
ZYAC = 180° — ZCAX = £B - £C). This completes the construction of AABC.
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Oontractlion 3, Lottt AARC given o, my, B - C.

B D A

(2}

Fig. 4.100

Fig. 4.101

See Fig. 4.100. Suppose AABC is the required triangle.

Let AS meet the circumcircle again at K (Fig. 4.100). We have ZA’SK = Z DAK =
4B~ £C (Theorem 24). Therefore ZASA” = 180° — ZDAS = 180° — (B - C). If AA’
meets the circumcircle again at L then A’A . A’L = A’B . A’C (secant property). Therefore
A'L=(A'B.A’C)I(A’A) = (a*4m,). A’L s the third proportional to @ and 4m, which can
be constructed. Now, construct the segment AA” = m, and on it construct the segment
of acircle at which AA” subtends 180°.~ (B - C). S must lie on this arc. Produce AA” to
L such that A’L - (a*/4m,). S also lies on the perpendicular bisector of AL. Now the
circle with centre § and radius SA cuts the perpendicular to SA” at the vertices B and C.
ABC is the required triangle. s
Construction 37. Given h,, m,, and A construct AABC.

As h, and m, are known, AADA’ may be constructed (Fig. 4.101). The median AA’
subtends ZAB'A” = 180° - ZA at B’ as A’B’ || AB. Therefore B’ lies on the circular arc
on AA” at which AA” subtends 180° — ZA. Further the line joining the midpoints of AD
and AA’ should pass through B’. These informations determine B’, from which AABC
is easily constructed. Q
Construction 38. Construct triangle AABC given A, my, m,.

See Fig. 4.102. Now £ BAB' = Z A and hence A lies on the segment of a circle on BB
at which BB’ subtends £ A. Produce BB’ to X such that B’X = BB’ Then B'CX = £ A since

Fig 4.102 Fig. 4.103
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BCXAisa parallelogram (see construction 34), Therefore C lies on the segment of the
circle on B’X at which B'X subtends ZA. We find G on BB’ from BG : GB =2: 1.
Having determined G, we note that C also lies on the circle with centre G and radius
(¥/3)m,. Thus we can determine C. Now AABC is readily constructed. a
Construction 39. Given a, t,, b + c, construct AABC,

Let b + ¢ = k. (See Fig. 4.103). Divide AU internally and externally in the ratio
ka=(b+o)a Then we get the points / and /,. The circle on 11, as diameter passes
through B and C. Therefore BC is a chord through U of the circle on /I, as diameter,
having the given length a, (Why?). This gives the required triangle ABC.

Note. The above problem has two solutions. =]

Construction 40. Construct a triangle ABC, given the three points of intersection of
the internal bi d with the ci ircl

We are given in position the three points P, QandR (Fig. 4.104). The circumcircle
of APQR is the same as the circumcircle of AABC. As we have already seen P, O, R
are the midpoints of 17, 11, and I, respectively. We observe that A is the common
chord of the two circles (Q, QA) and (R, RI). So, AIP is perpendicular to QR and hence
A is the second point of intersection of the altitude through P of the known triangle
PQR. This determines A and similarly we find the other two vertices B and C. Q

Fig. 4.104

Construction 41, Construct AABC givena, R, r.

Draw a circle of radius R and construct a chord BC of this circle having length a.
Then ZA = Z BPC for any point P on the corresponding segment of the circle. We
Kknow that 2 BIC = 180° — (B/2 + C/2) = 90° + A/2. This says that / should lie on the arc
on BC at which BC subtends 90° + A/2. Further I is at a distance r from BC. This
determines /. Once ZBIC is known, AABC is easily constructed.

Note. The above problem has two solutions or one solution. a
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Construction 42. Given A, ¢ +a, r construct AABC.
Y x&
In
» $ B D Tu ¢
P I I,

Fig. 4.105 Fig. 4.106

(See Fig. 4.105). Produce AC to P such that CP = BC. In AAIP we know AP =c +a,
ZIAP = A72 and the altitude /Y through /. So, AAIP may be constructed. £ PBC = C12
and so £ PBI = C/2 + B2 = 90° — A/2. Therefore B lies on the arc of a circle on Pl at
which PI subtends 90° - A/2. Also B lies on the tangent from A other than AP to the
incircle (7, r). This fixes B. Now, C is the intersection of AP with the second tangent
from B other than BA to the incircle (/, r). This completes the construction of AABC. O
Construction 43. Given a, h, and b + ¢ construct AABC.

See Fig. 4.106. We have ah, = 2 area of AABC = (a + b + c)r. This says that r is the
fourth proportional to a + b + ¢, a, h,, and hence can be constructed. /, I, divide AU
harmonically. Therefore K, L divide AD harmonically. Therefore given r, 4, the exradius
r, can be constructed. Now with @ and r,, - r, using 2a = R - (r, — r) we can construct
R. Knowing ¢, h,, R, the triangle is casily constructed.

Construction 44. Given a triangle and a point on one of its sides, trisect the triangle
by means of straight lines drawn through this point.

Let P be any given point on AC. We can construct 1 such that 3AP : AC=AB : 1. Let
Q be on AB such that AQ = 1. (See Fig. 4.107). Construct CT'such that 3CP: CA=CB:
CT. Then we have 3AP . AQ - AB . AC and hence

1 AP.AQ _AAQP
37 AB.AC  AABC
A 2 A

B T

()
)|

P K
Fig. 4.107 Fig. 4.108
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Similarly 3= A_C" and we see that PQ, PT are the required lines.
Q

Construction 45, Draw a triangle similar to a given triangle ABC and equal in area to
plq times the area of AABC.

Let P be a point on BC such that BP/BC = plq (If p > 1, p lies on BC produced).
Construct the mean propertional BQ between BP and BC. Let K be the point on BC
such that BK = BQ. Draw KL Il CA meeting BA at L (Fig. 4.108).

ALBK _ BK* _BP.BC

Then TABC = B_C’- g (by construction)
-BP_p
o »
Therefore A LBP is the required triangle. =]

Construction 46, Construct a triangle similar to a given triangle ABC and equal in
area to a second triangle DEF.

A M,

(@) ) *)
Fig. 4.109

On EF construct KEF similar to AABC. Draw DM Il F_E meeting EK (produced if
necessary) at M (Fig. 4.109). Let EP be the mean proportional between EK and EM.
Draw PQ Il KF meeting EF at Q. Then

APEQ _ EP? _ EK.EM _ EM = ADEF

AKEF ~ EK? EK® EK  AKEF

or APEQ is the required triangle. ) Q
Construction 47, Div ide AB internally and externally at X, Y respectively such that
AX? = AB - XB and AY? = AB - YB (medial section).

E,

Fig. 4.110
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Draw BC perpendicular to AB such that BC = (1/2) AB. Take D on CA such thay
CD = CB. Take X on AB such that AX = AD, We have AB? + BC? = AC* = (AD + DCY
=AD?+ DC* + 2AD . DC
=AX? + BC? + 2AX . BC
Therefore AB = AX?+2AX . BC=AX*+AX .AB
Therefore AX? = AB? - AXAB = AB(AB - AX) = AB . XB.
Thus X is the required point. For external division, extend AC to E such that CE = CB.
Take ¥ on BA produced (Fig. 4.110) such that AY = AE. Then one can easily check that
Y is the required point. Q
Construction 48, On a given base BC construct an isosceles triangle ABC such that
LB=LC=2LA.
Divide BC externally at Y in medial section, i.e., BY* £ BC . YC. (Fig. 4.111). Construct
an isosceles triangle ABC on BC such that AB = AC = BY. We have AC? = BY: = BC . YC.
Therefore CA is a tangent 1o the circle YBA at the point A. Hence ZCAB = ZAYB

(angle in the alternate scgment) = Z BAY (by construction), Therefore ZABC = ZB =
24CAB =2/A. Q

Note. 1. £B=ZC=72°and LA =36".

2. Given one of the equal sides AB, describe an isosceles AABC with ZB=ZC=2/A.
" For this divide AB internally at X such that BX? = BC . XC. Then AX is the base for

the required triangle ABC.

; " D
%\ F(
¥ - M

’ ¢ <
Fig. 4.111

Fig. 4.112
Construction 49. Inscribe a regular pentagon in a given circle,

Let A be any point on the given circle with centre O. Find P on AO such that
AP = AO . PO. Let AQ be a chord equal in length 10 AP. Then by Note(2) of the
previous construction, £AOQ = 36°. Take QB again equal to AP. This gives £ QOB =
36°and so LAOB =72°. So, AB is a side of the required regular pentagon. We continue
this construction to get C, D, and E (Fig. 4.112). Q
Note. A, Q. Bin Fig. 4.112 arc threc consecutive vertices of a regular decagon inscribed in the
same circle.

Construction 50. Construct AABC given 25, A and 1,

See Fig. 4.113. As AZ, = 5, from the given data we may construct AAL, Z,. Take U/
on Al, such that AU = 1,. Draw the excircle opposite to A, namely (1, 1, Z,). Now, AZ,
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The given points Y, E'. F” determine the circumcircle of AABC. Further, A, B and
C are the midpoimts of the arcs EF°, F'D and D'E’. (Fig. 4.115).

Construction 53. Given in position the nine-poiat centre N and one vertex A and the
directions of the internal bisector and of the altitude passing through the given vertex
A, comstruct AABC.

‘We know that the circamcentre S is on AS which is symmetric to the altitude through
A with respect 1o the given bisector through A. Also N is the midpoint of SH implies
that § is on the symmetric of the ahtitude with respect to the nine-point centre. These
mf s ine the ci S. This in turn enables us to locate H. If AH
meets the circomcircie (S. SA) at I’ then the perpendicular bisector of HD’ meets the
circumcircie st B and C.

Construction 54. Construct a triangle given the position of the nine-point centre and
one angle both in magnitude and position.

Suppose we arc given the angle at A. We note that ZB'NC = 2ZLB'A'C = 2A.
(Fig. 4.116). Therefore the isosceles ANB'C is a triangle with a known vertex and
known three angles. We use the following lemma.

Lemma. If the vertex A of a variable triangle ABC is kept fixed and B moves on given
straight line, such that AABC always remains similar to a given triangle then C describes
a straight line.

Let ABC be the position of the variable triangle when BC is on the given straight
line. Let AB,C; be any other position. (Fig. 4.117). Then ZACB; = ZAC,B, and
hence the quadrilateral AB,CC, is cyclic. Therefore ZACC, = ZAB,C, and hence
4LBCCy = LBCA + LACC, = LBCA + £LAB,C, = Fixed Angle. Therefore CC,
makes a constant angle with the given line and hence C moves on a straight line.
This proves the lemma. '

Now, by the lemma, when N remains fixed, B’ moves on the fixed line AC, such
that ANB’C” have constant angles ZN, £ZB, ZC, we sce that C’ moves on another
straight line; this locus of €’ determines the position of C’ on AB. Draw the
quadrilateral AC'NB’ such that AC'NB’ = 2A. From the quad. AC'NB’ passage (o
AABC is immediate. =

Given line
Fig. 4.117

Construction $5, Construct a quadrilateral ABCD given the four sides AB, BC, CD,
DA and the line joining the midpoints of AB and CD.

¥,
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the other tangent from A to this excircle and a

: tangent from U to the same circle are the
sides of AABC. S

Note- The above problem has two, one or no solutions.

cmng:ImSI.CormmluianﬂzABCgimihllﬁuduh,h.Mhr

We have ah, = bh, = ch_=2AABC.
a h,
L2228 where k=lbe
R, Bk h,
LS
o and k can be constructed.

AABC Il APQR where QR = hy, RP = h,, PQ = k. (Fig. 4.114). Let PK be the altitude
through P for APQR. Take L on PK such that PL = h,. Let the parallel through L to
meet PO, PR at B, C respectively. Then if A is taken at P, we see that ABC is the
required triangle. Q
Note. For APQR 10 exist we must have

h,+hy>k>h,~hy Inother words

hy+ hy > %‘ > h, ~hy or equivalently

Construction 52. Construct a
meet the circumcircle.

Fig. 4.116

Fig. 4.115
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Fig. 4.118

We can construct the parallelogram PXRY since we know the diagonal PR, side PX
= (1/2) BC. side XR = (1/2) AD. See Fig. 4.118. This gives the diagonal XY of the
parallelogram QXSY. in which we know the side QX = (1/2) AB, XS = (1/2) CD.
Therefore the p QXSY may be d. Now. the four points P, Q, R, S
are located and the quadrilateral ABCD is easily constructed. s]
Construction 56. Construct a quadrilateral given two opposite angles, the diagonals
and the angle between the diagonals.

Suppose we are given £ B, £ D, AC, BD and the angle £ BOC between lhedllgomls
(Fig. 4.119). Construct the two circular segments on AC on which B and D should lie.
Now, just find two points B, D on these two circular arcs constructed such that BD has
the given length and makes the given angle with AC. (see construction 16). Our problem

is solved now. u}
4 D A
i ;0 : / ? E 7D
B C X B C
Fig. 4.119 Fig. 4.120

Construction 37. Construct a cyclic quadrilateral ABCD given its sides AB, BC, CD
and DA.
Draw the segment BC and take X on CB produced such that BX = (AB . CDY/AD.
(Fig. 4.120). Now, ABCD is cyclic implies that
A AB AD

B =
£ABX = ZADC. = 3B CDVAD  CD

AX _AB
Therefore AAXB Il AACD and hence T AD

Therefore A lies on the circle on KL as diameter wl‘\erc K..L divide XC inlcma}ly and
externally, in the ratio AB/AD. Also A lies on the circle with centre B and radius BA.
This determines AABC from which we easily pass on to the quadilateral ABCD. 1
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EXERCISE 4.5

1. Draw a circle with centre O. Choose a point A on the circle: cut off chord AB. BC, CD,
DE, EF each equal to the radius. Prove that AF = AB and that ABCDEF is a regular
hexagon.

2. Ona given line segment. BC, construct an equilateral triangle ABC. Bisect the angles
B and C by straight lines meeting at S. Draw SD, SE paraliel to AB. AC respectively to
meet BC at D, E. Prove that D, E trisect BC, i.e.. BD = DE = EC.

3. Given a line segment x units long, construct one of length x* units.

4. Divide a straight line AB in the ratio ¥2:43 .
5. Divide a line segment internally at X and externally at ¥, so that AX?: XB?= AY?: YB? =
2::S:

6. Sisa given circle with centre O. Through a given point A, draw a straight line to cut §
at X, Y such that XY = BC = a given line segment (in length).
7. Draw a circle touching a given circle and a given straight line at a given point P.
8. Draw acircle to touch a given line AB and a given circle at a given point P.
9. A and B are given points; draw a circle S with centre A 50 that the tangent 10 § from B is
« of given length (less than AB). :
10. In a given circle, place a chord of given length. How many such chords can be drawn?
11. Inscribe a circle in a given triangle.
12. Draw a circle through two given points A, B to touch a given straight line CD.
13. Draw acircle to touch two given straight lines OA, OB and pass through a given point C.
14. Draw acircle to touch a given circle (centre C and radius ) and also to touch two given
straight lines OA, OB.
15. Draw a circle through “wo given points A, B to touch a given circle.
16.  Draw a circle, with its centre on a given straight linc, to pass through a given point and
touch a given circle
17. Draw a circle to pass through a given point A, to touch a given straight line BC and a
given circle.
18. Draw a circle through ¢ given point A to touch two given circles Cy, Ca.
19. Draw a circle to touch three given circles.
20. Let A, Bbe two given points on a circle S, /is a given straight line and C s a given point
on it; find a point M on the circle such that if AM, BM meet [ at P, Q then CP/CQ = 7.,
4 given ratio.
21. Construct a triangle so that its sides pass through three noncollinear points and be
divided by these points internally in given ratios.
22. Draw a circle tangent to two concentric circles and passing through a given point.
23. Inscribe a square in a given quadrilateral.
24. Inagiven triangle inscribe a parallelogram having a given angle and having its adjacent
sides in a given ratio.
25. Construct AABC, given R, a, (b + c)b.
26. Construct AABC, given in position (i) Ly, Iy, I, (i) 1, Iy, 1, (i) S, 1, 1,
27.  Construct a quadrilateral given the four sides and the sum of two opposite angles

156 AT Th.. or Pre-Golueoe Mmisuancs |

the nine-point centre N of AABC lis on SG and satisfies SG : GN'=2: 1). If this circle
(N, Rr2) lies within the circle, A may be chosen as any point on (S, R) and we get a
solution. Otherwise, we have an arc of the circle (S, R) on which A should not be
chosen, in order that we get a solution. Q
Problem 3. ABC is a right angled triangle, right angled at B. The triangle rotates about
B such that C and A always lie on two dicular lines OX, OY respectively. Find

the locus of the centroid of AABC. s 5
See Fig. 4.123. Now, by our hypothesis we note that the quadrilateral OCBA is cyclic
for which ACis adi: Th idpoint B’ of CA lies on the perpendi bisector

Do

(a)
Fig. 4.123

of the fixed line segment OB. The centroid G of AABC is on BB’ dividing it in the ratio

2: 1. Now the locus of B’ is the perpendicular bisector of OB implies that the locus of

G is a straight line GL parallel to the perpendicular bisector of OB [Fig. 4.123(b)]; such

that BL = : . =]
BM 1

Problem 4. If ABCD is a rhombus and P is equidistant from B and D then A, C, P are

collinear and further PC . PA = PB? - AB”.

D,
A /3
B
Fig. 4.124

PB = PD implies that P is on the perpendicular bisector of BD. Since ABCD is a
rhombus, AC is the perpendicular bisector of BD and hence A, C and P are collinear.
Also PA . PC = (PO + OA) (PO - OC) = (PO + OA) (PO - OA)

=0P?- OA?

= 0P + OB* - (0C* + OB%)

=PB* - BC? = PB* - AB? ]

4.6 SOME GEOMETRIC GEMS
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In mis:wction we lry to give an assorted collecti
of straight lines, triangles and circles in a pl
Problem 1. Let ABC be an acute angled triangle and D any point on BC. Find points

E, F on the sides CA, AB of AABC such i ini
length. uch that the of ADEF is of

ion of beautiful problems in the geometry
ane.

Q

Flg. 4.121

Draw DX, DY perpendicular to CA, AB (See Fig. 4.121) and produce them to P and
Q such that DX = XP and DY = YQ. Let PQ cut the sides CA, AB at E, F-respectively.
We claim that DEF is the required triangle. For, by construction DE = EP and DF =
QF. Hence the perimeter of ADEF = DE + EF + FD = PE + EF + FQ = PQ. If E, and
F, are any two points on CA, AB respectively then DE,; = E\P and DF; = F\Q and
hence perimeter of ADE F, = PE; + E;F, + F,Q 2 PQ (note that the distance between
any two points in a plane is the minimum along the straight line joining the two points!).
Hence E, F are the required points. Q
Problem 2. Given a circle (S, R) with centre S and radius R show that an infinite
number of triangles may be inscribed in it, having their centroid at a given point within
the circle.

Let A be any point on the given circle and G be the given point inside the circle.
Produce AG 1o A’ such that AG : GA’ =2 : 1. See Fig. 4.122. Let the perpendicular to SA”
cut the circle at B and C. Then ABC is a triangle inscribed in the given circle having G
as its centroid. Now. if A” lies outside the circle, then we do not have any solution. We
note that as A moves. the locus of A” is a circle. In fact the locus of A” is the circle
(N. R/2) where N is the point on SG dividing it externally in the ratio 3 : 1. (Recall that

Fig. 4.122

Problem 5.1f ABC is an equilateral triang]
of AABC then PA = PB + PC.
Quadrilateral ABPC is cyclic and Prolemy’
gives BC.PA=AB - PC + AC . BP. Here
Therefore. PA = PB + PC. (Fig. 4.125), Q
Problem 6. (Erdés-Mordell Theorem).If O is any point inside a triangle ABC and P,
Q. R are the feet of the perpendiculars from 0 upon the respective sides BC, CA ABoi'
AABC'henOA+OB+0CZ2(OP+OQ+OR). o
LetA,, A; be the feet of the perpendiculars from R and Q on BC; similarly B,, B, are
the feelv of the perpendiculars from P and R on CA; C), C, are the feet of the
perpendiculars from Q and P on AB (Fig. 4.126).
In the triangles PRA, and OBR we have
ZPAR = ZORB = %0°
ZPRA, = ZRPO (alt angles)
= ZOBR (angles in the same segment of the circle OPBR)

157
le and P lies on the arc BC of the circumcircle

’s theorem applied to this quadrilateral
we have AB = BC = CA.

Fig. 4.126
o bence P o OR 0
APRA, Il AOBR and hence PR - OB

Itis clear from Fig. 4.126, that A;A, < RQ, BB, < PRand C,C, < PQ. Similarly, we have
0Q BQ OP 0B, OR GR_0Q

PO T 0OC' PQ T OC’ QR OA’QR OA
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RC, OP
RP ~ 0B @
Using(2)in  OA+0B+0C2 0A[ A1t +oa(2&)+oc &G
RQ PR PQ
we get, OA + 0B +0C2 0A( AP+ PAy +os(ﬂ2+_021)
RQ PR
+oc SR+ RC, *E[QR.OQ*’RP.DP)
PQ PO\ OA 0B
_ﬂ(PR.OR*PQ.OQ]*O_B(PQ.OP*QRAOR]
" RO\ 0B oc PR\ oC O0A
OB PQ  OC.PR
= 0P| —.—=% imi
[PR OC*PQ‘OB]+s|mxlnrlerms
22(0P+0Q+OR) (sinceifx>0,x+ 1/x22} a

Problem 7. Given an acute angled triangle ABC, find points D, E, F, on the sides BC,
CA, AB of AABC such that the perimeter of ADEF is a minimum.

For a given point D on BC, this problem is solved in problem 1 of this section. By
construction (see Fig. 4.121) we have AP = AQ = AD. Also, ZDAX = ZXAP and
£LDAY = LYAQ and £DAX + LDAY = LA.

Therefore, £QAP = 2ZA. This means that for any choice of die point D on BC.
ZQAP =2£A = constant in the isosceles triangle AQP. Further QP = permeter of
ADEF and therefore the perimeter of ADEF is a minimum when the side QP of the
isosceles triangle AQP with constant vertical angle is a minimum. This happens when
the equal sides have minimum length. But AQ = AP = AD and AD is a minimum when
D is the foot of the perpendicular from A on BC. Thus the required triangle is the
(pedal) orthic triangle DEF. =
Problem 8. Let F be any point on the side AB of AABC. D be the intersection of BC
with the straight line AD Il FC through A. Similarly, let £ be the intersection of CA with

Fig. 4.127
ACAF Il AEAB since CF Il EB and ACBF Il ADBA. Therefore, we get
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Fig. 4.129
Let the tangents at A, and A, meet at By; those at A, and A; meet at B and so on. P be
any point on the circle with py, p. ..., p, being the perpendiculars from P on the sides
Ay Ay AjAs ... Ay Ay Ay A Of the polygon AA; ... A, Also let gy. gy, ... g, be the
perpendiculars from the same point P on the sides BB, ByB;, ... B,,_, B, of the outer
polygon B, B, ... B,. Then by the special case discussed in the beginning of the solution,
we see that p? = g, 4y, p? = 444, .. and p? = q,,_, g,. Multiplying we see that
PiP2 - Pa=9192 - G

Problem 10. The algebraic sum of the perp from any point to the sides of a
regular polygon of n sides is a constant and is equal to n times the apothem. (i.e., the
line drawn from the centre of the polygon perpendicular to a side). We may attach
signs to the perpendiculars such that for points within the polygon, the perpendiculars
are all positive. Let ‘a’ denote the length of a side of the regular polygon and h=0A
(sec Fig. 4.130) be the apothem. Then the polygon is made up of the 2 triangles OAA,.
OAjAs, ..., OAA,. Each of these triangles has area equal to (1/2) ah. Hence the area of
the polygon is given by A = (1/2) nha. If P is any point on the plane of the polygon, we

see that the area of the polygon A=(1/2) a Z I, where h is the algebraic perpendicular
=1

distance of P from the side A, A, , ;. Thus we get nh = hy + hy + ...+ h, or Ihc} algebraic

sum of the perpendiculars from any point P to the sides of a regular polygon is equal to

n times the apothem. )

Fig. 4.130 Fig. 4.131
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CF  AF CF  BF
EB = ap ™ pa=ur
Adding we get CF(—I— +L w ALFEB, 1
BE ~ AD AB
A g
AD " BE = CF a
. If Bt o oo &
:;vd?::::nyg apolygon is inscribed in a circle and a second polygon is cricumscribed

l.:angem.s to the circle at the vertices of the first pol on, the:
the perpendiculars on the sides of the first, from any po?:t f:n the ¢:i1"|c'lt.e ::uo‘::':td:'
product of the perpendiculars from the same point to the sides of the second.

This problem will illustrate how a degenerate special case, on repeated applications,
may prove the general case. We consider the special case now. See Fig. 4.128. Suppose
AB is a chord of a circle and the tangents at A and B meet at C. P is any point on the

circle and PL, PM, PN are the perpendicular from P on the sides AB, BC, CAof AABC.
Then we claim that PM . PN = PL2.

A
R
! C
B
Fig. 4.128
Proof of claim: We have, APAN Il APBL
EN A
PL  PB
Again, APBM Il APAL and
PA L
P8 = PM " us, we have

e -PN=PL?
ps = = pr O M

This ancillary result that we have just now proved is the problem 9, for a two sided
polygon!

Now, consider an n sided polygon A; A3 Ay ... A,, inscribed in a circle and let By, B,
... B, be the polygon circumscribing the same circle got by drawing the tangents at the
vertices Ay, Ay, ... A, (Fig. 4.129).
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xem-:cl“nc ‘ﬁxl{ms problem 10 to an equilateral triangle we see that the sum of
perpe:  from a point to the sides equals the altitude; also for a square, the sum
of the perpendicular distances equals twice the side of the square.

W l}. If no angle of a triangle ABC is greater than or equal to 120°, then the
point P inside the AABC such that PA + PB + PC is a minimum is the Ferma‘t point of
AABC making 120° with each side of AABC.

;l'he l_:erfnal point of a triangle ABC in which no angle is bigger than 120° is the
point P msnd_e the triangle such that £BPC = ZCPA = ZAPB = 120°. (Fig. 4.131). If
we dra"v equilateral triangles outwardly on the sides AB and AC, say AAXB and AAYC,
d\cn P is the other point of intersection of the circles AXB and AYC. (Fig. 4.132) Now,
having located the Fermat point P inside AABC, draw MN, NL and LM perpendicular
to PA, PB and PC respectively. By ion the i PANB, PBLC and
PCMA are all cyclic. Hence, each angle of ALMN is 60° or ALMN is an equilateral
triangle. By the previous problem (Problem 10, Remark) we have PA + PB+ PC=h=
the altitude of ALMN. If Q is any other point inside AABC, let A,, B,, C, be the feet of
the perpendiculars from Q on the sides MN, NL and LM respectively.

Fig. 4.132 7
Again by problem 10 (remark) we have QA + QA, + QA; = h = altitude of ALMN. But
itis clear from the figure (Fig. 4.131) that QA + QB+ QC> QA+ 0B, + QC,=h=PA
+ PB + PC. This means that the Fermat point P is our required point. We note that at
best only one of the pairs of points (A, A,), (B, By), (C. C)) can be coincident pair of
points and hence QA + QB + QC > QA + 0B, + QC\. a
Problem 12. If ABC is a triangle in which no angle is bigger than equal to 120° and
equilateral triangles AC'B, BA'C and CB’A are constructed outwardly on the sides AB,
BC. CA of AABC then the lines AA”, BB’, CC’ concur at the Fermat point P of AABC,
and further AA” = BB’ = CC'. (Fig. 4.133).

c

Vi
Fig. 4.133 Fig. 4.134
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Suppose Q is any wmm Now, rotate AQAB about B through 60° to

B (Fig. 4.134). .
‘:e:;;%m(::c,ﬂ is Lxmle‘ as AB = C,B and funbef AABC, = angle of rotation
= 60°. Therefore, AAC, B iis equilateral. This means that irrespective of the posn:mn of
0. C, must be the third vertex of the equilateral triangle on AB. d'_‘“}’““"““; % and
honce C, coincides with C', Again, £ 0BQ,= 60° and QB = 0,8 implies that ABQO,

is also equilateral.

This means that QA + QB + 0C = G0, + 010 + Q€

= the length of the polygonal path CQ @, ). (1)
This polygonal path joining C and C; has minimum length when Q and Q[ lie on the
line segment CC,. in which case Q becomes the Fermat point of AABC (in view of
(1)). When CQQ,C, is a straight line, we should have £ BQQ, = 60° and hcn_cc £BQC,
= 60°; this implies that the circumcircle of ZAC,B passes through Q and this fixes the
potiu'onon.onCC.‘l‘herefmﬂleFermﬂpoianli‘smCC’and CC'=PA+PB+
PC. By symmetry, the Fermat point P also lies on AA’and BB'. Further AA" = BB’ = CC
=PA+PB+PC. n]
Note. There is another beautiful solution to Fermat’s problem using Prolemy’s theorem.

Let ABC be any triangle. Let B and C be acute angles of AABC. Construct the
equilateral triangle BA’C on BC and consider its circumcircle. (Fig. 4.135). If P is on
the minor arc BA’ of the circle BA’C then by Ptolemy’s theorem,

PB.CA’ + BC . PA’ = PC . BA' which gives PB + PA’ = PC and hence PB + PC>
PA’. Similarly if P is on the minor arc CA’, we get PB + PC > PA”.1f P is on the minor
arc BC, then we have

PB.CA’+PC.BA’=BC.PA" or
PB+PC=PA’
Unless P lies on the minor arc BC we have
PB +PC>PA’ or PA + PB + PC > PA + PA"
Now PA + PA’ is aminimum only when P lies on AA” and in which case PA + PA" =AA".
Thus the minimum of PA + PB + PC is AA” and it occurs when P is at the intersection
of AA” and the circumcircle of ABA'C. In case ZBAC = 120°, A coincides with P. If
+ ZBAC > 120°. A lies within the circle BA’C and A is still the Fermat point of AABC.
Q
Problem 13. If CAB, A’BC and B'CA are the equilateral triangles drawn outwardly on
the sides of a given triangle ABC then the centres X, ¥, Z of the equilateral triangles
form another equilateral triangle.

Let us draw the major arcs of the circles C’AB, A’BC and B'CA. Let PQ be any line
segment through A intercepted by the circles C'AB and B'CA at P, Q respectively
(Fig. 4.136). Let PB and QC meet at R. We note that £ QPB = £ PQC = 60° and hence
£BRC = 60°. Therefore, R lies on the circle A’BC. Further APQR is equilateral. From
the centres X and Y, drop the perpendiculars XL, YK on the side QR of APQR. Then L.
and K are the midpoints of the chords RC and CQ. Draw XM L YK so that XMKL is a
rectangle. Now, K and L being the midpoints of QC and CR we see that QR = 2KL.
“Therefore QR is the largest when LK = XM = XY (Fig. 4.136); i.e.. when M coincides

. with Yor QR | XY. Further maximum QR = 2XY. For a similar reason PQ is a maximum
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Fig. 4.135 Fig. 4.136

when PQ | YZand PQ = 2YZ and maximum PR is twice ZX. But for any choice of P on
the major arc of circle C’AB, we always have POR as an equilateral triangle. In particular
when APQR is the largest, we have PQ = 2YZ = QR =2XY = RP = ZX. Hence AXYZ s
equilateral, =
Problem 14. Consider the two geometric transformations Rot (0, @) and Rot (O3, B)
where Rot (A, 8) means rotation about the point A through an angle 8. Find the sum of
the two rotations Rot (0, &) and Rot (0, B).

Consider a line segment AB. Under Rot (). @), AB is transformed into AB,. We
have AB=A,B, in length and the angle between A; B, and AB is o the angle of rotation.
Under Rot (05, B) A, B, is transformed into A;B,, with A8, = A By in length and the
angle between A,B; and A B, is f§ (Fig. 4.137). Therefore, the angle between A,B; and
ABis o + B and hence the transformation Rot (05. B). Rot (Oy, @) preserves the length
of line segments and rotates them through (ct + B). This means that Rot (02, B) Rot
(0. @) is again a rotation through (o + B) about some point O, unless o + B=360°in
which case it becomes a translation. We may get the centre of rotation of Rot (O, B)
Rot (0, @), when & + B # 360°, as follows.

Under the sum of the two rotations, O, goes to a point O] such that 0,0,, = 0,0 and
£0,0,0{ =B (Fig. 4.138). If O3 is the point on the ray through O, making an angle &

o
Fig. 4.137 Fig. 4.138
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on the sides of a triangle ABC inwardly.

mmﬂimx.vlldmmmmsdmfmuwvmicesofm
equilateral triangle.
Y
A
/)\
_ \lt‘v
WA
B c

Fig. 4.139

Equilateral triangles AC"B, BA'C and CB'A are described inwardly as in Fig. 4.139.
Let X, ¥, Z be the centres of the triangles BA'C; CB'A and AC'B respectively. Rotate
through 120° about X. then rotate through 120° about ¥ and then rotate through 120°
about Z. The first transformation Rot (X. 120°) takes B to C since £ BXC = 120°; then
Rot (Y. 120°) takes C to A and Rot (Z. 120°) takes A to B. Thus the sum of the three
rotations leaves B fixed. But the sum of the three rotations Rot (X, 120°), Rot (¥, 120°)
and Rot (Z, 120°), is a translation (Problem 14); and this translation leaves B fixed
implies that this translation must be the identity transformation. Now Rot (X, 120%)
followed by Rot (¥, 120°) is Rot (0. 240°) where O is the point of intersection of the
lines through X and ¥ making angles 60° with XY (see Problem 14). This means that
AXYO is equilateral. Now Rot (O, 240°) followed by Rot (Z, 120°) is the identity
transformation. Hence O and Z should coincide. Thus £ XYZ is equilateral. a
Remark. The above proof also works for problem 13 where the equilateral triangles
are drawn outwardly. The equilateral triangles XYZ formed by their centres are called
the outer Napoleon triangle and inner Napolean triangle respectively.

Problem 16. If the perpendiculars from a point P of the circumcircle of AABC to the
sides BC, CA. AB meet the circumcircle again at A’, Bj, C| then AA{, BB}, CC) are all
parallel to the Simson line of P with respect to AABC.

See Fig. 4.140. We have ZAJAC = ZA{PC = £A\PC= £A,B\C (since quadrilateral
A, CPB, is cyclic). Therefore AA{ Il C,B\A,. Similarly BB| CC] are also parallel to the
Simson line A,B,C, of P. )
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Problem 17. Find all the points on the circumircle of a given triangle ABC whose
Simson lines all have a given direction.

Draw BX parallel to the given direction meeting the circumcircle of AABC at X
(Fig. 4.141). Draw the perpendicular from X to the side AC meeting the circle again at
P. Then by the previous problem (Problem 16) P is the required point and the Simson
Tine of P is A,B,C, parallel to BX through B, (Fig. 4.141). Again, problem 16 implics
that P is the unique point whose Simson line is parallel to the given direction. Q
Problem 18. Construct AABC given A, b + c and h,.

Suppose AABC is the required triangle. Let the internal bisector of £ZA meet BC at
Uand theci ircle at P. Drop the p diculars PC, and PB, on AB, AC respectively
(Fig. 4.142). We have

AC,+AB, =AB + BC,+ AC - B,C=AB + AC + BC,- B,C
=b+c+BC -BC ™

Fig. 4.141 Fig. 4.142

We know that PB = PC (why?) and PC, = PB, ("~ P is on the bisector of ZA).
Therefore APAC, = APAB, and APC\B = APB,C. Hence AC, = AB,, BC, = B,C.
Substituting in (*) we get AC, + AB, = b + ¢ and therefore AC) = AB, = (1/2) (b +¢).

In the quadrilateral AC\PB; we know ZBjAC, = ZA, the sides AC,, AB, and the
other two angles ZAC, P and ZAB, P are right angles. This means that we can construct
quadrilateral AC,PB,. Now AP is the perpendicular bisector of B,C,. We observe that
B,C, is the Simson line of P for AABC. Therefore B,C, cuts BC at A the foot of the
perpendicular from P on BC. Suppose B,C, meets AP at.Q. Consider the triangles
ADU and POA,.
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U = ZPQA, =90°, ZDAU = ZQPA,
EAnCs ! (altenate angles; AD Il PA;)

Therefore AADU lll APQA,. This gives

Pg _PA __PA_ (1)
AD ~ AU ~ AP-UP
In the right triangle PA,U, A;Q is the altitude from A, 5
Therefore PA}=PQ.PU :3:

Similarly from APAB,, PBf = PQ . PA
From (1), (2) and (3) we have PQ . AU = PA, . AD = PAf = PQ . PU
PQ (AU + UP) = PA + PA, . AD.
PQ (AP) = PA{ + PA, . AD
. (3)gives PA? + PA, .AD-PB} =0 @
In this equation (4) we know AD = h,, PB; is known from the quadrilateral AC\PB;.
So, PA; may be constructed.
(Exercise: Construct two segments given their product g and their sum p. In other
words solve geometrically, the quadratic equation x - px +¢ = 0).
Now draw the circle with centre P and radius PA; meeting B,C, at A,. The line
perpendicular to PA, through A, meets ACy, AB, at B, C respectively. This gives AABC.
(s]
Note. This problem has no solution if &, > AQ (depends only on b+ c and A). h, = AQ implies
AABC is isosceles and h, < AQ gives two symmetric solutions with respect to AP.
Problem 19. Let P,, P, be any two points on the circumcircle of AABC. Then the
angle between the Simson lines of P and P; is half the angular measure of arc PPy
Let the perpendiculars from P, P, to BC meet the circumcircle again at X, ¥
respectively. (Fig. 4.143). Then we know that the Simson line of P, is parallel to AX
and the Simson line of P, is parallel to AY (Problem 16). Therefore the angle between
the Simson lines of P, and P, is ZXAY.
Now, P\ X li P,Y implies that arc P,P, = arc XY.
The required angle = ZXAY = (1/2) ZXSY = (1/2) £P,SP;. Q
Remark. As an immediate consequence of Problem 19 we note that the perpendiculars
through Py, P; to the Simson lines of P,, P, respectively meet at the circumcircle of
AABC. The same is true for the parallels through P,, P,.

Fig. 4.143 Fig. 4.144
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concurrent. Further, the point of concurrence is the midpoint of the line segment joining
the orthocentres of AABC and A P, P,P,. Also the Simson lines of A, B, C with respect
10 AP, P,P; are concurrent at the same point. The Simson line of each of Py, Py, Pyis
perpendicular to the line joining the other two, Conversely. if a chord QR is

perpendicular to the Simson line of some point P on the circumcircle of AABC. then
the Simson lines of P, Q, R are concurrent.

In view of Problem 17, for any two distinct points Py, P; on the circumcircle, the
Simson lines are not parallel. Let them meet at point X.

If H is the orthocente of AABC, join HX and produce it to " such that HX = XH'.
Let P; be the orthocentre of AP, P,H’. (Sec Fig. 4.146)

Fig. 4.146

‘The Simson line of P, bisects P{H and by construction X is the midpoint of HH'.
Therefore P\H" is parallel to the Simson line of Py. Similarly, P,H" is parallel to the
Simson line of P,. So, £ P,H’P; = angle between the Simson lines of P and P, (in our

" figure it is the obtuse angle). .

PLH'P) = 180° - %m PPy = 180° - ZP\AP;.

But ZP,P3P, = 180° — ZP,H'P, = £ P\AP; and hence P lies on the circumcircle
of AABC.

Further the Simson line of P; must be parallel to PyH’ (why ?) passing through the
midpoint K of P3H. This means that the Simson line of P has to pass through X. The
point of concurrence X of the Simson lines of Py, Py, Py is the midpoint of the line
segment joining the orthocentres / and H’ of the triangles AABC and AP\ PoPy
respectively. The Simson line of P, is parallel to PH" and hence perpendicular to
P,P3. By symmetry, we see that the Simson line of each of Py, Py, Py is perpendicular
to the line joining the other two.

Conversely suppose a chord QR is perpendicular to the Simson line of some point
on the circumcircle of AABC, then the Simson lines of P, Q, R are concurrent. For, if
the simson lines of P and Q intersect at X, extending HX to H’ such that HX = XH' we
see that PH’ is parallel to the Simson line of P with respect to AABC.

Therefore PH’ L QR. By the first part of the problem /' is the orthocentre of A PR,
wheﬁk. is that point whose Simson line with respect to AABC passes through X. This

_ means that QR, is also perpendicular to PH'.
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“Problem 20. If P, and P, are two diametrically opposite points on the circumcircle of
AABC, then their Simson lines are perpendicular to each other and intersect on the
nine-point circle of AABC.

From the previous problem, the angle between the Simson lines of two diametrically
opposite points Py, P, is 180°/2 = 90°. By Theorem 63, the Simson lines of P and P,
bisect the segments HP, and HP, where H is the orthocentre of AABC. Let the midpoints
of HP, and HP, be M, and M, (See Fig. 4.144.)

Now the nine-poir;( centre N is the midpoint of SH and  is the midpoint of P P;.
Therefore N must be the midpoint of M;M,. .

NM, =(172) SP, = g = NM, = radius of the nine-point circle.

MM, is a diameter of the nine-point circle of AABC.

Suppose the Simson lines of P, and P, meet at X. Then £ M, XM, = 90° Therefore X
lies on the nine-point circle of AABC.

Problem 21. Let A, B,C, and A,B,C; be two triangles inscribed in the same circle. It P
is a point on this circle, the angle between the Simson lines of P with respectto AA;B,Cy
and AA,B,C, is a constant.

P be any point on the ci of the given tri; Draw PX, PY perpendicul.
10 A;C, and A,C; respectively meeting the circle again at X, Y (Fig. 4.145). Then the
Simson lines of P with respect to the two triangles are parallel to B,X and B,Y ( Problem
16). The angle between B, X and B,Y is given by

(1/2) (arc XY — arc B,B,)

= ZXPY - (1/2) arc B,B,,
= £C,ZCs - (1/2) arc BB,
(angle between the perpendiculars)
= ZA\C:A; + £LCAC, - (112) arc B,B,
= (1/2) (arc A,A, + arc C,C; - arc B,B))
= constant, independent of P.

Fig. 4.145

Problem 22. Given a triangle ABC and two points P, P, on its circumcircle, there
exists a third point Py on the circumcircle such that the Simson lines of Py, P,, P3 are
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Therefore R = R,. Thus the Sj i

imson lines of P, Q, R with res) to AAB

concurrent. Further it is clear from our discussions that the Simson lli,x.:of A, B, Cthi;

respect 1o AP, P,Ps, also concur at the same point X. - n]

ProumCD DI dr::,npgzl;:ncdh;rg ofa ci;cle. Through the midpoint M of PQ chords AB and
2 meet i idpoi

P ooy 'Q at K and L. Then prove that M is the midpoint of

‘Draw perpendiculars KX, 1 LY, from K, L on AB, CD respectively (Fig. 4.147)

Similarly draw KX,, LY, perpendicular to CD, AB from K and L.
AMKX, IlAMLY, gi L.l = K,
1 2 gives S Iy, m

Fig. 4.147
AMKX; M AMLY, gives MK _ KXy
1 g ML Iy, Q@r
g KX AK
AAKX, WACLY, gives —L =22
1 2 8 Ly, oL 3)
q KX, DK
ADKX, Il ABLY, gives L—yz =G (4)

[MK)_ﬁ KX, _ AK.DK :
wE) = v, Ly, CLBL from (1), (2), (3) and (4)
PK.KQ  (PM—-KM)(MQ+ KM) 2

PL.LQ = (PM+ ML)(QM — ML)

[

(Since PM = MQ)

Now = hence MK = ML a

mr
Problem 24. Let the incircle touch the side BC of AABC at X. If A” is the midpoint of
BC then prove that A/ bisects AX. .

Let K’ be the diametrically opposite point to X on the incircle of AABC, Draw B,C,
tangent to th@incircle as in Fig. 4.148. Then B,Cy |l BC and AAB,C, Il AABC. The
incircle of AAB,C, should touch B,C, at X, the iritersections of AX and B, C,. (Why?).
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Fig.4.148
We have YY, =B,Y, + B\Y=B\X, + BiK' = 2B /X, + X,K’
or ©OBXy = (1) (YY, - X,K) = (112) (ZZ, - X,K') = C\K".

Similarly BX = KC (Fig. 4.148).

Hence A is the midpoint of XK as well. This means that A/ should be parallel to
KK’ which implies that A’/ bisects XA. =]
Problem 25 (Morley’s theorem). The points of intersection of the adjacent trisectors
of the angles of any triangle form the vertices of an equilateral triangle.

Fig. 4.149

Let the trisectors BA| and AA; meet at K (See Fig. 4.149). For the triangle ABK, the
incentre is Aj. Let the incircle of AABK touch BA, and AA; at M. N respectively.
Suppose A;N meets AC at X and A3M meets BC at Y. Let the tangent from X to the
incircle touch the circle at P. We have A;N = NX as AN bisects ZA:AX and AN LA X
So, A3P = A3N = (1/2) A3X. Also ZA3PX = 90°. This means that ZPA.X = 60° and
ZAXP=30° )
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Further LMA3N = 180° - ZMKN (as quadrilateral MKNA, is cyclic).
=180° ~ (180° - (2/3) (£ B + £A))
=(23) (LB + LA) = (2/3) (180°-Z0C)
=120°-(23) (£ ) )
Suppose the tangent XP from X to the incircle of AABK meets BK at Z.
Then £ZYM = £ZA3M (since AZAY is isosceles, as AM = MY, MZ L A3Y).
= (1/2) ZMA4P (since tangents at P and M meet at 2)
=(112) (£ MA3P ~ £ PA3X) = (1/2) (L MA3N - 60°)
=(112) (120° - (2/3)£ C - 60°) from (2)
Thus LZYM =30°-(113) £C 3
ZAYX = LAXY (as AyX =AY = 2A3M)
=(1/2) (180° - £LXA3Y)
= (I/2) ZMKN (since quadrilateral MKNA; is cyclic)
=(1/2)°(180° - (2/3) (LB + £LA)
=(1/2) (180° - (2/3) (180° - £ C)
=(1/2) (60°+ (2/3) £C) =30° + (113)£C.
LZYX = AYK - LAYZ = LAYX ~ LMYZ

- (30=+‘TC)-(3<P—£) & %zc

<
and LZXY = LAXY - LAXZ
= (30"+%€]—30° = ‘—:’C from (1)

3 £XZY=180°-ZC or ZYCKis cyclic.

This means that Z coincides with A, and the tangent from X to the incircle passes
through A,. Similarly, the tangent from ¥ passes through A,. By. symmetry ZA AP =
ZAAN; £ZPAX = 60° implies that ZA,A;A, = 60°. Again by symmetry each angle
of AA|AxA, is equal to 60°, a

1. AOB s a given angle. Two circle of a radius ry, r; touch OA, OB and also touch each
other. Find the radius of another circle touching the sides of ZAOB and having its centre
at the point of contact of the two given circles.

w

. Sy and 5, are two non-intersecting circles with their centres at a distant ‘d” apart. Prove
that the four points of intersection of direct common tangents and transverse common
tangents are concylic. Find the radius of this circle.

. S s acircle of radius R and centre O. Two other circles of radii ry, r touch  internally
and they intersect at A, B. Find ry + r,.

4. Given two circles, find the locus of point P such that the ratio of the lengths of the

tangents drawn from P to the given circles is a constant.

. Given three pairwise intersecting circles, prove that the three common chords of the
circles are concurrent,

w
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i i ion of the
choﬂnhﬂdeldck.ﬁndhlocuofﬂ!qﬁﬂﬁm
i extremities of chords passing through A.
tangents drawn to the circle at the > -
produced at D, E and F respectively. Prove that the
7. Astraight IinenmAB.BCndA‘g“m d
midpoints of DC, AE and BF, are - - -
8 mmmmmmwwA.AmmﬂWm mects
i of the incentre of AABC.
hrgercnclenl.cﬁndduloan -
9. Points P, 0, R are taken on BC. CA, AB such that BPIPC = QA=
PfovethulmAPaRﬂu’dm’)l(m-rn)’mMBC.
10. Construct AABC given my, e he- o
11. Construct a triangle given a, my/me, b* - ¢ )
12. Prove that the feet of the four perpendiculars “aupped_ from a vertex of a triangle on the
four bisectors of the other two angles are collinear. )
13. Givenmcsixnﬁdpoimxoﬁbemsub‘mdedbylhesidesofxg!mAABC. Prove that
one can construct 1, I, Iy, I with ruler alone.
14. Construct AABC given r, rg, My,
15. Given the positions of /. /, and the length h, as well as rJr, construct AABC.
16. Construct AABC given b-c, B, 1.
17, Construct AABC given b ~c, hy, 1.
18. Construct AABC, given A, X, X, (notations as in the text).
19. Four points A, B, C, D such that each is the orthocentre of the triangle formed by the
other three are said to form an orthocentric group of points. Prove that
(i) the four triangles of an orthocentric group have the same orthic triangle.
(i) the four triangles of an orthocentric group have the same ninc-point circle.
(ifi) the circumradii of the four triangles of an orthocentric group are equal.
(iv) the circumcentres of an orthocentric group of triangles form an orthocentnc
ilateral.

6. Apoint A is

(v) Anorthocentric group of triangles and th ic group of their
have the same nine-point circle.
(vi) The four vertices of a given orthocentric group of triangles may be considered as
the ci of a second ic group of triangles.

(vii) The four centroids of an orthocentric group of triangles form an orthocentric group.

(viif) The nine-point centre of an orthocentric group of triangles is the same as the nine-
point centre of the orthocentric group formed by the centroids of the given group
of triangles.

(ix) In any-AABC, prove that /, I,. Iy, I form an orthocentric group.

(x) Ais the orthic triangle of the orthocentric group 7. I, Iy, Ic and the circumcircle of
AABC is the nine-point-circle of the same ic group.

(xi) The circumcentres of the group /, ,, Iy, I, are the incentre and excentres of the
symmetric of AABC with respect (o the circumcentre § of AABC.

(xii) Show that the algebraic sum of the distance of the points of an orthocentric group
from a straight line passing through the nine-point centre of the group is equal to
zero.

20. If h, m, 1 the altitude, the median, and the internal bisector from the same vertex of a
triangle then prove that 4R?h3(# — i) = (m? ~ I?) where R is the circumradius of the
. triangle.
-21. ABCD is a cyclic quadrilateral. Prove that the perpendiculars from the midpoints of AB,
BC, CD, DA 1o CD, DA, AB, BC respectively concur at a point.

¥ B R BB

3

31

32

ABCD is a cyclic quadrilateral; Hy. H. Hs, H, are the orthocentres of ABCD, ACDA,
ADAB and AABC respectively. Prove that AH,. BH,. CHs. DH, bisect each other.

I X is the common point to AHy, BH;. CHs. DH, in problem 22, prove that the nine-point
circles of AABC, ABCD. ACDA. ADAB pass through X.

With notations as in problems 22, 23 prove that XA? + XB? + XC? + XD? = 4R? where R
is the radius of the circle ABCD.

Prove that the incentres of AABC, ABCD, ACDA, ADAB in a cyclic quadrilateral ABCD
form a rectangle.

For AABC. we call I, I,, Iy, I, as the tritangent centres. Prove that the sixteen tritangent
centres. of the four triangles ABC, BCD, CDA, DAB of a cyclic quadrilateral lic by fours
on eight straight lines: these eight lines consist of two perpendicular groups of four
parallel lines.

. If a. b, c. d are the sides of a cyclic quadrilateral ABCD, prove that (arca ABCDY =

(s—aXs-bNs-cNs~-d)where 2s=a+b+c+d.
ABCD1is a cyclic quadrilateral in which AC L BD. Prove
(i) The midpoints of the sides of the quadrilateral ABCD are concyclic and their
centre is the centroid of ABCD.
(if) If AC. BD meet at O the perpendicular from O to AB bisects CD.
(i) If X. Y. Z. W are the feet of the perpendiculars from O on the sides of the quadrilateral,
X. Y. Z. Wlic on the circle passing through the midpoints of the sides.
(iv) If S is the circumcentre of ABCD, then the distance of S from AB is equal to CD/2.
(v) AB? + CD? = BC? + AD* = AR? where R is the circumradius of ABCD.

. Prove that in any triangle ABC, b* - ¢ = 2a A’D where D the foot of the altitude from A

and A" is the midpoint of AB.

If P is a point on the side BC of AABC such that

BPIPC = min, then prove that mb? + nc® = (m + nAP? + mPC* + nPB.

If three equal circles have a common point then prove that the circle through the other
three intersections is equal to them.

In problem 31, if the centres of the three equal circles are Cy. Cy, C; and their points of
intersection are O, A, B. C prove that the figure formed by 0. A, B, C is congruent to the
figure formed by C. C,. C. C; where C is the centre of circle ABC.

33. In problem 32 prove that in either of these congruent figures, the line joining any two of

the vertices is perpendicular to the line joining the other two.

. On a line segment AB a semicircle is drawn. On the other side of AB: a rectangle ABDC

is drawn with AC equal to the side of the square inscribed in the circle. P is any point on
the semicircle; PC. PD cut AB at X, Y. Prove that AX* + BF? = AB”.

. ABC is an isosceles triangle with AB = AC; P, Q are points on AB : S is the circle (P, PB)

and S, is the circle (Q. OB). Similarly R, S are points on AC: Sy is the circle (R, RC) and
Sy is the circle (5. SC). Let S, and S; meet at X, Y and S; and S; meet at Z, W. If PR and QS
meet at T. prove that T is the centre of the circle passing through X, ¥, Z, W.1f PR Il S,
then prove that X, ¥, Z, W lie on a straight line perpendicular to PR.

. XY is a chord of a circle and P is the midpoint of XY. AB and CD are chords through P.

Prove that AC and BD cut XY at equal distances from P, the same being true for AD, BC.

. 1f § 1s a circle and AX. BY. CZ are the tangents from.A, B, C to S, then prove that the

circles of AABC touches S if and only if AB. CS = AC . BY + BC.AX =0.

A, C. B are three colliner points in that order. Consider the semicircles on AB, BC, CA on
the same sides of AB. The figure bounded by the above semicircles is called ‘Shoemaker’s
Knife'. Let the perpendicular through C 1o AB meet the semicircle on AB at D. Let TU be
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1. arc ADC = arc ATC + arc CUB

2.DC*=TU*=AC.BC

3. X is the centre of the circle through C. D. T. U.

4. 's Knife" L
v.

S.M_uMT-dBmesw ke .

6. 1f S; and S, are the ci hmhhmwnslﬁ::&xbmvenm
Sy and S; are equal and diameter of S, equals AC . BC/AB. o
'I.chi&s.umMmACtlmmmmgﬂmmmmmu

M passes through B. : .
8. Prove that the smallest circle tangent to an circumscribing §) and 5 is the circle on
CD as diameter. )

3. D.E.ano'llsud:siduﬂC.CA.ABofMBC.Ptovel!unhecnclesAEF.BDF
and CDE meet at a point.

4. lfvealllhmpaiudmmdclsinpvb.”su.pm\mdmub,ME.MF
make equal angles with the respective sides.

Further prove that £ BMC = ZBAC + LEDC.

41. Prove that the circumcircles of the four triangles formed by four lines have a common
point.

42, Givmfowlinuhaﬂ-:.mlhﬂmixmemdonlympoim(mmwhichlhe{eet
dmpmmmmummmuw.wusmmnmmm: problem 41).

43. MCislu'In;kMD.E.FuvpoinuouBC.CA.A&BypwblemD.lhecimlesA@FA
BFD and CDE have a common point M. If AP, BP. CP are three concurrent lines meeting
the circles AEF, BFE, CDE at X, Y. Z respectively prove that X, Y. Z, M. P all lie on a
circle.

44. LaF.F,.F..F,belhepoimso{eonlmonhen.ine-pomlmlcmmmemcmlemdmc
three exscribed circles of AABC. prove that the point of intersection of the diagonals of
the quadrilateral formed by F, F,. F;. F_ lies on its midline. A -

45, With notations as in Prob. 44, if the internal and external bisectors of angles A, B. C meet
BC.ABatA,, By, Cy, C; respectively,

having CD as di

prove that AF FyF, | | AAB\C,
AFFF. Il AABC
AFF.F, i ABGCA;
AFF,Fy, I  ACA:B;

46. ABCD is a cyclic quadrilateral. Four circles o, B, . 8 touch the circle ABCD at A. B. C.
D respectively. Let 1, be the segment of the direct common tangent to . Bif e, B touch
the circle ABCD in the same manner (both internally or both externally); let 1,5 be the
segment of the transverse common tangent if &, B touch the given circle in different

49. Let AgByCoand A,B,C) be two acute angled triangles. Let
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f= (BABC | AABC Ill AA\B,C,. Ay is on BC, By is on CA and Cy is on AB). Find a

triangle in f of maximum area and construct it.

50. Prove that if n 2 4, every quadrilateral that can be inscribed in a circle can be dissected

into n quadrilaterals each of which is inscribable in a circle.

51. P is any point inside AABC; u, v, w be the distances from P to the vertices 4, B, C
respectively; x, y, z be the distances from the point P to the sides BC, CA, AB respectively.

Then prove that
(D au+bv+cw24A
(u+v+w22x+y+2)
(Fii) ux + vy + wz 2 2(xy + yz + zx)
Gv) 2(u + Uy + Uw) S Ux + Uy + Uz
V) uww 2 R(x +y) (y +2) (z+ xVzr
(vi) uvw 2 4Rxydr
(Vid) uv + vw + wu 2 2R (xy + yz + zx)ir
i) u+v+w26r
52. Prove the following for a triangle ABC.
(i) 3(bc + ca + ab) < (a + b + ¢)* S 4(bc + ca + ab)
(i) @ + b2 + ¢ 2 36(s? + abels)3S.
(iid) 8(s - a)(s - b)(s - ) S abc.
(iv) abe < a¥(s - a) + b¥s - b) + ¢(s - ¢) < 3abcl2.
(v) be(b + ¢) + calc + a) + abla + b) 2 48(s —a) (s - b) (s = ¢).
(vi) 2slabe S Va® + VB2 + 1/c2.
(vii) 312 < al(b + ¢) + bl(c + a) + clla + b) < 2.
(viif) The perimeter of the triangle < s.

53. Prove that AABC is acute, right or obtuse according as a* + b + ¢ — 8R? is positive, zero

or negative.
54. Ifin AABC. a* + b* > 5¢%, then show that ¢ is the smallest side.

5§5. 1f pis the perimeter of the triangle whose vertices are the points of contact of the incircle

with the sides of AABC, prove that p 2 6r° [J4R .

56. ABC is aright triangle with ZA = | radian and right angled at C. If [ is the incentre and
O is the midpoint of AB and N is the midpoint of OC, find whether AN/O is an acute,

obtuse or right triangle.

57. Find a necessary and sufficient condition on a quadrilateral ABCD in order that there
exists a point P in the plane of ABCD, such that the areas of the triangles PAB, PBC,

PCD, PDA are all equal.

58. ABC s a triangle such that @, b, ¢ are all unequal; G, /, H are the centroid, incentre and

orthocentre of AABC. Prove that ZGIH > 90°.

ways. Similarly we define, fgy etc. Prove that
faptys  Ipylsa = larlps

47. Onthe circle K there are three distinct points A, B, C. Using a straight edge and a compass,
construct a fourth point D on K such that a circle can be inscribed in the quadrilateral
ABCD.

48. Acircle is inscribed in AABC. Tangents to the circle parallel to the sides are constructed
Each of these tangents cuts off a triangle from AABC. In each of these triangles a circles
is inscribed. Find the sum of the areas of all the four inscribed circles

59. Let ABC be atriangle; K, L be points on BC trisecting BC; M, N be on CA trisecting CA;
P, Q be on AB trisecting AB. Construct equilateral triangles KLA; MNB’, PQC all directed
inwards. Show that A"8°C is an equilateral triangle having the same centroid as AABC.
In AABC. the internal bisector of ZA and the median through A meet BC in two distinct
points L and D. The perpendicular from B upon AL meets AL and AD in P and M
respectively. The perpendicular from C upon AL meets AL and AD in Q and N respectively.
Show that LM Il AB and IN | AC.

60.
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61+ Let D be a variable point on the side BC of AABC. swmﬁdmm "“8;;‘
mtheincimlsdAABDandAACD,mberlhanBC.meelsADmE.ﬁ locus of E.

62. ABC s a mangle with ZA = 30°. Sis the circumeentre and / is m;;{ngtzzf;\gﬂsiog
isa point on segment AB and E is a point on segment CA sm_:hlhll - Z
that S/ L DE and S = DE.

63. ABCD is a convex quadrilateral in which AC = BD: XAB. YBC, ZCD M;Vgﬂln;e
equilateral triangles and S, Sy, S5, Ss arc their centres respectively. Prove that §; 53 L.,
e .

64. S, and S, are two circles which touch externally at P; § is a circle which touches S, and
S, internally. A direct common tangent (0 Sy, 5y meets Sat B, C. The common tangent to
S..S,u?meeu.hummalP.AliemtbesunesldeofBC. Prove that P is the
incentre of AABC. I i

N is a triangle and P is an! int inside AABC; X, Y are feet of perpendicul

o ?I':Ii Plo‘::ic‘. Z,Ware Ih);?;:l of the perpendiculars from A to BP, CP. Prove that the
lines ZY, WX and BC are concurrent.

66. AABC is an acute angled triangle; A’ is the midpoint of BC and P is any point on the
median AA” such that PA” = BA’. The perpendicular from P to BC cuts BC at X. The
perpendicular from X to PB cuts AB at Z and the perpendicular from X to PC cuts AC at
Y. Show that the circle XYZ touches BC at X.

67. lis the incentre of AABC; C’ is the midpoint of AB and B’ is the midpoint of CA. The line
C1'meets AC at By and the line B’ meets AB at Cy. If area of AAB,C; equals area of
AABC, find ABAC.

68. AB and CD are chords of a circle cutting each other at £ M is a point on the chord AB
such that AM/AB = m/n. The tangent at E to the circle DEM cuts BC at X and CAatY.
Prove that YE/EX = m/(n — m).

69. In AABC, BD and CE are the biscctors of £ B, £C cutting CA,ABat D, E respectively.
1f £ BDE = 24° and ZCED = 18°, find the angles of AABC.

70. AoBoCois a triangle and P is inside it; A, By, C are the feet of the perpendiculars from P
on the sides of AAg By Co; A, By, C; are the feet of the perpendiculars from P on the sides
of AA;B,C,. Likewise we define AA,B,C, forn>2.1s one of AA,B,C, forn 2 1, similar
10 AApBCy?

71. C,, C3, ...C, be a sequence of circles inscribed in Shoemaker’s Knife such that C,
touches S,. S, and C,_,, where S, S, are seimicircles on AB. AC respectively and Cy is
the semicircle on CB (See Problem 38). Prove that the distance of the centre of C, from
AB is n times the diameter of C,..

72. S, and §; are two circles of unit radius Touching at point P; ] is a common tangent 10 S,
S, touching them at X, ¥; C is the circle touching 5y, Syand [, C,is thecircle touching S,
S, and 1. C,_ for n> 1. By computing the diameters of C,. prove that 1/1.2+ 1223 + 1/
34+ . +Unn+ D+ ..=1.

73. ABCisanisosceles triangle; /is a straight line passing through a vertex of AABC, dividing
AABC into isosceles triangles. Find all such isosceles triangles.

74. Find all convex polygons, for which one angle is bigger than the sum of the remaining
angles.

75. Let P be a set of finitely many points in the plane, not all in a straight line. Prove that
there exists a straight line in dic plane containing exactly two points of P.

76. Let P be a finite set of points in a plane, no three of which are collincar and not all in a
circle. Prove that there is a circle in the plane containing exactly three points of P

QuAbRrATIC EQUATIONS AND
EXPRESSIONS

5.1 INTRODUCTION

In this chapter we shall discuss equations of the form
y=ax+bx+c O]

where a, b_. ¢ are real numbers. These are called quadratic equations in the variable x.
To start with, we take a simple linear equation of the form

y=ax+b.
In particular, consider the equation
2x-1=0

. 1
We know that the solution is x = 2 Suppose on the other hand we draw the graph of
the function
y=2x-1

ona conrdinat_c plane. The plotting of the curve is done, as usual, by fixing values of x
at reasonable intervals and working out the corresponding values of y.

x 0 1 -1 2 -2
y=2-1 -1 1 -3 3 -5

»Thcrefom. (0= 1. (1, 1), (= 1,-3),(2, 3) and (- 2, - 5) are all points on the graph
of the function y = 2x - 1. A little experimentation will show that any three of these
points are collinear. In fact the graph of y = 2x - 1 will be a straight line. That this will
be so for any equation of the form y = ax + b will be proved in Chapter 7. It is therefore
only necessary to plot two points on the graph of y = 2x— 1 and join them by a straight
line, on the coordinate plane.

Let us now plot the straight line y = 2x— 1. Two points on this line may be taken as
(0, = 1) and (1, 1). Fig. 5.1 shows the straight line joining them. Such a graphical
representation of the function y = flx) = 2x— 1 gives us a sure method of estimating the
solution of the equation

&-1=0.
We have only to look for points on the straight line y = 2x - 1, for which y = 0. This
happens somewhere between x = 0 and x = 1. The actual value of the root of the
equation is x = 1/2. This is confirmed by the graph of the function. But it is important
177
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62.

63.

65.

66.

67.

72.

73.

74.

7.

76.
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of AABC. Suppose the direct common tangent
to the incircles of AABD and AACD, other than BC. meets AD in E, find the locus of E.
AHCis-m-nglewimAA=30'.Sisthecimmenmmdlistheinctnneo_fAM;C.o
hnpoimmxpnmtumsislpoimmsegm(a suf:hﬂmBD: CE = BC. Show
that S/ L DE and SI = DE.

ABCD is a convex quadrilateral in which AC = BD: XAB._YBC, ZCD and WDA are
equilateral triangles and Sy, S 3, S, are their centres respectively. Prove that 5, S5 LS,
Sae

S‘. and §; are two circles which touch externally at P; Sis a circle which touches S, and
S, internally. A direct common tangent (o Sy, S, meets S at B, C. The common tangent to
S..S,quee(sSuAsuchtthvAlieonmeslmesideofBC. Prove that P is the
incentre of AABC.

ABC is a triangle and P is any point inside AABC: X, Y are the feet of the perpendiculars
from P10 AB, AC; Z, W are the feet of the perpendiculars from A to BP, CP. Prove that the
lines ZY, WX and BC are concurrent.

AABC is an acute angled triangle; A" is the midpoint of BC and P is any point on the
median AA’ such that PA” = BA”. The perpendicular from P to BC cuts BC at X. The
perpendicular from X to PB cuts AB at Z and the perpendicular from X to PC cuts AC at
Y. Show that the circle XYZ touches BC at X.

Tis the incentre of AABC; C is the midpoint of AB and B is the midpoint of CA. The line
C'I' meets AC at B, and the line B'] meets AB at C,. If area of AAB,C; cquals area of
AABC, find ABAC.

AB and CD are chords of a circle cutting each other at E: M is a point on the chord AB
such that AM/AB = min. The tangent at E to the circle DEM cuts BC at X and CA at Y.
Prove that YE/EX = m/(n - m).

Let D be a variable point on the side BC

. In AABC, BD and CE are the bisectors of £ B, £ C cutting CA, AB at D, E respectively.

If ZBDE = 24° and £ CED = 18°, find the angles of AABC.

AoBoCo is a triangle and P is inside it; A, By: C, are the feet of the perpendiculars from P
on the sides of AAg By Co: Ay, By, C; are the feet of the perpendiculars from P on the sides
of AA,B,C,. Likewise we define AA,B,C, for n > 2. Isone of AA,B,C, forn 2 1. similar
10 AApBCo?

. Cy. Gy, ...C, be a sequence of circles inscribed in Shoemaker’s Knife such that C,

touches S, S, and C,_;, where S}, S are seimicircles on AB. AC respectively and Cy is
the semicircle on CB (See Problem 38). Prove that the distance of the centre of C, from
AB is n times the diameter of C,.

S, and S, are two circles of unit radius Touching at point P; / is a common tangent to S,
S, touching them at X, Y; C is the circle touching ), S, and [, C, is the circle touching S,
S, and I. C,_; for n > 1. By computing the diameters of C,, prove that 1/1.2 + 123 + 1/
34+. . +Unn+D+..=1

ABCis an isosceles triangle; / is a straight line passing through a vertex of AABC, dividing
AABC into isosceles triangles. Find all such isosceles triangles.

Find all convex polygons, for which one angle is bigger than the sum of the remaining
angles.

Let P be a set of finitely many points in the plane, not all in a straight line. Prove that
there exists a straight line in die plane containing exactly two points of P.

Let P be a finite set of points in a plane, no three of which are collinear and not all in a
circle. Prove that there is a circle in the plane containing exactly three points of .

QuADRATIC EQUATIONS AND
EXPRESSIONS

5.1 INTRODUCTION

In this chapter we shall discuss equations of the form

. y=axt+bx+c (1
where a, b, ¢ are real numbers. These are called quadratic equations in the variable x.
To start with, we take a simple linear equation of the form

y=ax+b.
In particular, consider the equation
2&-1=0

1
We know that the solution is x = 3 Suppose on the other hand we draw the graph of

the function

y=2x-1
on a coordinate plane. The plotting of the curve is done, as usual, by fixing values of x
at reasonable intervals and working out the corresponding values of y.

x 0 1 -1 2 -2

y=2x-1 -1 1 -3 3 -5 -

Therefore, (0, - 1), (1, 1), (= 1, - 3), (2, 3) and (- 2, - 5) are all points on the graph
of the function y = 2x — 1. A little experimentation will show that any three of these
points are collinear. In fact the graph of y = 2x - 1 will be a straight line. That this will
be so for any equation of the form y = ax + b will be proved in Chapter 7. It is therefore
only necessary to plot two points on the graph of y = 2x— | and join them by a straight
line, on the coordinate plane.

Let us now plot the straight line y = 2x ~ 1. Two points on this line may be taken as
(0, ~ 1) and (1, 1). Fig. 5.1 shows the straight line joining them. Such a graphical
representation of the function y = fix) = 2x - | gives us a sure method of estimating the
solution of the equation

2x-1=0.
We have only to look for points on the straight line y = 2x — 1, for which y = 0. This

_happens somewhere between x = 0 and x = 1. The actual value of the root of the

equation is X = 1/2. This is confirmed by the graph of the function. But it is important
177
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- y=2e-1
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0,0) / 1,00 (2,00  x-axis
©,-1)

Fig. 5.1

to note that the graphical soluti 0t be a precise itute for the ic solution.
In this case it is, because the answer is x = 1/2. But if the answer happens to be a more
complicated number, the geometrical (that is graphical) solution may not give an
accurate answer., This has nothing to do with the efficacy of the geometrical method. It
is only a reflection or our equipment capabilities, like reading of measurements from a
figure or a drawing.

To sum up, whenever we want to solve dn equation of the form

ax+b=c’ 2)
we may also do it geometrically by drawing the straight line graph
y=ax+b,

and looking for the x-coordinate of the point where the line y = ¢ (parallel to x-axis)
cuts the line

y=ax+b.
For instance, 10 solve
2x+3=5,
draw the graph of 3
y=2x+3.
Draw the line
y=5.

The two meet at (1, 5). See Fig. 5.2. So x = | is the answer.

Now let us take a second degree expression, the simplest of which is y = 22, Since
the square of a real number is always non-negative, the graph lies above the x-axis.
Moreover x2 = (- x)? so that at both x and - x, y takes the same value. Thus the graph is
symmetric about the y-axis. However, in the case of a first degree equation the graph
being a straight line, can be completely drawn, once we plot any two points on the
graph. The same cannot be done here. We can draw the graph of

y=x

i i f y obtained by taking x at
be ximately drawn using the values of )
Threaone s‘:g:lec::l‘ervnm in the case of a first degree equation, we can look for the
x-coordinates of the points on the graph of

y=ad+bx+c
where ilnwasﬂ\ex-axjssinoey=00nd|cx-axis, Ily we get all the solutions of
ad +bx+c=0.
For example, consider the equation
? 2-1=0. 3)
Giving various values for x', we can :zppmximatcly draw the graph of
y=x-1

asin Fig. 5.4. Atx=+landx=~ 1, we see that the graph meets the x-axis and at no
other points do they meet.
Let us now consider the equation
2+1=0. @)

The graph of y=xt+1

- axis

. . :
(-1,0) (1,0) X - axis
N

Fig. 5.4
is shown in Fig. 5.5.
x 0o | "1 -1 2. | -2 3 -3

7
y=2+l| 1 2 2 5 5 10 | 10 J

We observe that the graph does not meet the x-axis at all. We conclude that the equation
(4) has no solution in real numbers.

These three equations, viz., equations (2), (3) and (4) exhibit an important feature
of equations of second degree. An equation of second degree may have two solutions,
may have one solution, or may not have any solution, in real numbers. In any case it
has at most two solutions.

. y=2x+3
.5 y=5
0,3),
?
15,0/ (0,0
1,0 2,0 x-axis
©,-1)
Fig. 5.2

only approximately On the coordinate plane using values of y at some chosen values
of x. (See Fig. 5.3). ¥

x o 1 [-1 2 j=2 13 L=¥}s
y=x| 0 1 1 4 4 9/l 9 o

We are now ready to take the graph of the second degree expression, in the general
case, viz., -

y=al+bx+c’
- axis

(-3.9) Q-=mmemnmnn 1 T ——. 8 (-3,9)
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Ifis a real valued function defined on R, we can imitate the previous procedures.to
draw u.m graph of y = f{x). Generally, it may be very difficult to draw even an
approximate graph of fix). If it is possible to draw the graph of f{x), many important
properties of the function fix) which are not obvious from the algebraic form of f{x)
can be inferred by looking at its graph. Again the natural question is to solve the
equation fix) = 0. Any real or complex number o such that fir) = 0 is called a zero of
fix). Theoretically, we can find all the zeros of f{x) by looking for the x-coordinates of
the points where the graph of fix) meets the x-axis. We emphasize again that drawing
the graph of fix) may not be feasible in all cases even if the explicit algebraic form of
fix) is known.

¥ - axis
-2.4) 2,4
(-1.2) (1.2)
0.1)
o [
(0,0) X -axis

Draw the graphs of the following functions

1, 3x+$ 31 &=

3 cHd s 221

5 v-2v+l 6. I-245
3

7. ©-1

5.2 SOLUTION OF QUADRATIC EQUATIONS BY FACTORIZATION
In section 5.1, we observed that in general the graph of
y=a+bx+c, a#0
meets the x-axis at two points, This graphical method gives us a way of solving the
equation
ad+bx+c=0, a%0 m
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provided . i i f such a function
ided the graph meets the x-axis. However, drawmg the graph of
‘may not be a feasible task. We can only draw an approximate gra!ah in general and can
get only Jutions. An equation of the form (1) is called a quadratic

equation. Because of this drawback of the graphical method, we look for algebraic
methods of solving equation (1).
Suppose we can find numbers d, e, uand v such that

(@x? + bx +¢) = (dx +€) (ux +v) 2)
for all values of x. Then, to solve
2 ad+bx+c=0,
we have only to solve

(dx+e) (ux+v)=0. "

This would mean

either 2 dx+e=0 or ux+v=0.

This gives

either & x=-eld or x=-vlu.

But note that we can write like this only if d # 0, u # 0. This is however true. since
du=a from (2)

and a #0 by our starting ption. Thus the quadratic equation (1) has two luti

a=-eld p=-viu
whenever there is a factorization of the form (2). In other words the quadratic equ_alion
*(1) can be solved if there is a factorization of ax? + bx + ¢ into a product of(wo Iln_c;\r
factors. The solutions of equation (1) are also called the roots of the quadratic equation
(1) or the zeros of the quadratic polynomial ax’ + bx + c.
EXAMPLE 1. Find the roots of the quadratic equation
1223 +25x+ 12 =0.
. SOLUTION. Since 12x12=144=16x9 and 25=16+9,
we have 123 +25x + 12 = 120 + 9x + 161 + 12
=(4x+3)(3x+4).
Hence the roots of the given quadratic equation are
a=-3/4,B=-4/3.

EXAMPLE 2, Solve the equation
© 22+ 2M6x +3=0.
SOLUTION. We can write
2024 2J6x +3=22 4+ fox + Jox +3
=(J2x + ﬁx)(./fx + ).
Thus the roots of the given equation are obtained by solving two identical equations
) VZx+43 =0,
V2x+43 =0.
In such a case we say that the given equation has two identical or coincident roots

= V3N2.B=- V3W2.
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Example 2 also illl_xslnus an important aspect of the roots of a quadratic equation. The

roots of a d q may be i In other words a root of a quadratic
equation may repeat itself.

Find the zeros of each of the following quadratic polynomials by factoring it.

1. 37 -8x+5 2. 2-3x-18

3 2-3x-10 4 6-x-12

5 182 4x-5 6. 232+ 11x+443

7. =435 24 120- V35 8. 2¢-33x+3

9. 6 +41x-7 10. 22 +4x+16

1. 82+2¢-3 12, 374+ 11x-4

5.3 METHOD OF COMPLETING THE SQUARE

In section 5.2, we have seen how 10 solve a given quadratic equation, whenever the
ponding quadratic expression can be written as a product of two linear factors.
However, given a quadratic equation, it may be difficult to realise the corresponding
linear factors. We shall also see that there are quadratic functions having no factors
with real coefficients. But by mere inspection of the quadratic function, we may not be
able to decide whether the function has factors with real coefficients.
Let us begin with the quadratic equation

2+x-1=0. m
The quadratic function x? + x - 1 is negative at x = 0 and positive at x = 1. This means
that the graph of x* + x — | must pass from the y-negative half-plane to the y-positive
half-plane when x goes from 0 to 1. It must cut the x-axis somewhere between O and 1.
These observations show that the equation (1) has a root between 0 and 1. Similarly,
x% +x~ 1 is negative at x =~ | and positive at x = — 2. Hence the equation (1) also has
aroot between — 2 and — 1. The equation (1) has thus two real roots; one between 0 and
1 and the other between - 2 and - 1. But from the expression x + x — 1, we cannot
guess its linear factors.

On the other hand, let us also consider the equation

C+x+1=0. )
Apriori, it is difficult to say whether x* + x + 1 can or cannot be written as a product of
two linear factors with real coefficients. However, we observe thatx? + x + 1 is positive
for every real number x. In fact, if x 2 0, then

Fax+121>0;

if x<-1, then
Crx+l=xx+D+121>0
since x and x + | are both negative; if - | <x <0, then
Cax+l=F+@+)>0+0=0.
Thus the graph of x? + x + 1 does not meet the x-axis. In other words the equation has
no roots in real numbers. This implies that x? + x + 1 cannot be written as a product of
two linear factors with real coefficients (see also Chapter 10).
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There is a general way of decidi whether a gt ic eq!
ad+bx+c=0,a#0 3
has a real root, and a method of finding the roots of the equation (3). This mclh<_>d is
known as the method of completing the square. The central idea of the method is to
convert (3) to an equation of the form
(dx+e)*+f=0.
where d,  and fare real numbers. This can be
4a¥ + dabx + dac = 0.
Since a # 0, equations (3) and (4) have the same solutions.
But (4) can be written as
(Zax+b)’+4ac—bz=0, 5)
Thus we can take

lished by idering the

“)

d=2a,e=b,f=dac—b.

Hence a number oreal or complex) is a root of (3) iff it is also a root of

(2ax + b)? = b* - 4ac. ©6)
We can use (6) to find the roots of (3).
The quantity D = b — dac is called the discriminant of the g dratic eqy (3), or
the discriminant of the quadratic p jal ax? + bx + ¢. The nature of the roots of (3)
can be completely determined by its discriminant b - 4ac.
Theorem 1. The quadratic equation

ad+bx+c=0, a#0
where a, b and c are real numbers, has real roots if the discriminant D given by
D =b*-4ac

is non-negative. In the case when D 2 0, the roots of the given quadratic equation are

-b+VD _—b—\/B
- B

Proof. We have seen in the preceeding discussions that the given quadratic equation
and the equation

(2ax + b* =b*~4ac=D (©6)
have the same set of solutions. Suppose the given equation has a real root x;. Then
(2ax + b)* 2 0 and xg is also a root of (6). This means that D 2 0 is necessary for
equation (3) to have a real root. Conversely, assume now that D > 0. Then D has two
real square roots, + JD and - D . Hence taking the square root in (6). we get two
linear equations

()]
(compare this with our observation in 5.2). Solving these linear equations, we get two
roots of the equation (6).

Since the equations (6) and (3) have the same set of roots, 0. and 3 are also the roots of
the given quadratic equation (3). =]
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Remark. If D = 0 then the roots of the quadratic equation (3) are
o=-b2a,B=~bl2a

which are identical. On the other hand if D # 0, then ot & # B also o=  implies D =0.

Thus the equation (3) has coincident roots iff its di
EXAMPLE 1. Find the roots of the equation
2+x-1=0.

SOLUTION. The discriminant D of the quadratic polynomial is
D=12-4x1x(-1)=5 '
Thus D > 0 and the given equation has two real distinci roots. They are given by

wo=b*VD 1445
" 2 2
s_—b-JE_~1—~/§
2a - 2
We also observe that 2 < /5 < 3. Hence the estimates
L -1+45
X il
2 2
,_—l-¥5 -3
SR ———— =
2 2

are true. This conforms with our earlier observations that the given equation has a root
between 0 and 1 and a root between — 2 and - 1. .
EXAMPLE 2. Soive the equation
127 + 25x + 12 = 0.
SOLUTION. Earlier, in example 1 of section 5.2, we have found the roots of this
equation by factoring the corresponding quadratic function,
122 + 25x 4 12 = (4x + 3) 3x +4)
1o get the roots & = — 3/4 and B = - 4/3. The same conclusion can be drawn using the
method of this section. Since a - 12, b= 25 and ¢ = 12, the discriminat is
D=b'-4ac=25"-4x12x12=49.
Thus D > 0 and the equation has two real, distinct roots. These are

_-b+yD _ =254V

2a 24
=- 18724 =-3/4, -
oy gob=VD -5 -3 .
T 2a 24 T2 T
We see that a=y and B=3d.

EXAMPLE 3. Determine whether the equation
42 +4x+1=0
has real roots and solve for them.
SOLUTION. The discriminant of the equation is
D=4-4x4x1=0.
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Hence we conclude that the given equation has two coincident roots, namely,
=-4/8=-172,

B=-1n2.

This can also be inferred from the observation that
42 +4x+1=(2x+1)2
EXAMPLE 4. What are the solutions of the equation
+2x-4=0
* SOLUTION. The discriminant is given by

D=22+16=20,

so that the given equation has real distinct roots. They are given by

=-—_2"'2‘/’E =-1+45

T ow, B
NOw we shall take a fresh look at the equation (6), namely
(2ax + b =b*-4ac=D. :

If D 2 0, we could take square roots on both sides using the fact that every non-
negative real number has two real square roots. This would given us two real solution
of equation (6) and hence those of equation (3). However, if only we can give a meaning
to /D even if D <0, then we will be able to solve the given equation (3) for any real
values of @, b and ¢. If D < 0, then we pass to complex numbers and take square roots

=¢=—I-~/§.

of D in C. In this case D has two square roots in C, viz., i \[3 and ~i /- D . Thus
we have the following theorem.
Theorem 2. If the discriminant
D =b?* - 4ac
of the quadratic equation
al+bx+c=0, a#0
is negative, then it has two complex roots which are conjugare to each other.

Proof. We have seen that the set of i f the given ic equation is identical
with the set of solutions of
(2ax +b)*=D. *)

If D <0, then it has two complex square roots i,[— D and - i,/- D . Hence the two
roots of (*) and hence of the given quadratic equation are

ae ~b+iJ-D
-
-6-iJ-D

oI
Since b and a are real, we see that

B =@ the complex conjugate of c.
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Thus the non-real roots of a quadratic equation with real coefficients always occur
in pairs, one being the complex conjugate of the other. =}
Theorems 1 and 2 completely resolve the question of existence of roots of a quadratic
equation with real coefficients. If the discriminant D > 0, then the given quadratic
equation has two distinct real roots. If D = 0, then it has two coincident roots. In the
case D <0, the given equation has two complex roots, one being the complex conjugate
of the other. Combining all these, we can make the following statement.
Any quadratic equation
a +bx+c=0
where a, b and ¢ are real numbers, has exactly two roots. If ¢ is a non-real root of the
equation, then a is the other root.
EXAMPLE 5. Solve the equation
3P +2x+1=0.
SOLUTION. The discriminant is
=-8<0.
Hence the equation has no real roots. The complex roots are given by

_=b+i-D _-1-i2

“= e =T 3
-b+i‘/—D —14iV2
B=— =73

EXAMPLE 6. Find the roots of the equation
2 +2JFx+2=0.

SOLUTION. We have D= (243 2 -4 x3x2=-12<0.
Hence the roots are

—=1+i =1~i

EXERCISE 5.3

1. Find the roots of the following equations:

(@) 22 +x+1=0 (b) 9 +2x-3=0

(©) ¥ +2u+4=0 (d) 4 +2x-1=0

(€) *+6x+6=0 (f) 2% +5x+4=0

(8) 43 +9x+2=0 () 23 R +4x- {3 =0

() 32 +%-5=0 () ¥ +5x-6=0.

2. For each the following equations find the set of values of a for which the equation has

real roots:

(@ a+9%-1=0 (b) 2 +ax+2=0

(d 22 +ax-a=0
(N ald+4x+a=0.

(¢) 2 +4x+a=0
(&) ¥+@+2x+a=0
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3. Aperson {0a vegetable market to buy vegetables. He finds that the price of carrot is
dle:quu:s:?mepﬁeeofbeu-m‘HehnysZkilosofcmonndShlosofbeel-moLw
tenders 27 mpecs.Whnislhepﬁceohkiloofcml?

4. Solve for x in the equation .
2m(1 +2) = (1 +m?) (x +m) =0.
5. Find the values of a for which the equation
@+ 2a+ )x+4=0
has coincident roots.
6. Suppose p and g are real numbers which do not take simultaneously the values p = 0,

g = 1. Suppose the equation
(U -g+p2) 2+p(l +g)x+qlg-1)+p2=0
has two equal roots. Prove that p? = 4. o

5.4 RELATIONS BETWEEN ROOTS AND COEIFFICIENTS

There are very useful relations between the roots of a quadratic equation
a?+bx+c=0 [¢}]
and its coefficients a, b and c. These relations are true irrespective of whether (1) has
only real roots or it has complex roots. If the discriminant D 2 0, then the equation (1)
has two real roots given by

-b+VD B -b-VD @
2a 2a
Now we observe that
Ghpa b+D) _(-b-D)
2a 2a
=-2b2a = - bla.
- (b+JD) (-b-D)
Similarly, off = - oa
b -D _ 4ac
T =T =cla.
In the case D < 0, the solutions of (1) are
-b+iJ-D
O B 3)
Now an easy computation gives again
o+ B =-bla,af =cla.
Thus we have the following theorem.
Theorem 3. If o and B are the roots of the quadratic equation
‘ al+bx+c=0
then, o+ B=-bla,
off = cla. )

EXAMPLE 1. Find the sum and product of the roots of the equation
52 +5x+1=0.
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SOLUTION. If ¢ and B are the roots of this equation, then (4) shows that
a+B=-5/5=-1, .

af = 1/5.
EXAMPLE 2. If o and B are the roots of
P4+dx+6=0,
find the values of
(i) Vo + 1/B, (i) o + B, (iii) oU/P + Plet.
SOLUTION. We have ~ a+B=-4,af=6.
Hence
We can write
And lastly,
= P
-4)' - (2%6,
. % =4l6=23,

Suppose & and P are the roots of a quadratic equation
a +bx+c=0.
Then. we have  (x- @) (x - B) =x* - (@ + P)x + af

1
=04 ﬁ.ru:: —(ax® + bx +c).
a a

This leads to the factorization,
ax® + bx + ¢ = a(x - a)(x - B).
Thus, if we know the roots of a quadratic equation, then we can write ¢
factorization of the corresponding quadratic function.
Conversely. if & and B are two numbers (real or complex), then the most ...
quadratic equation having o and P as its roots is given by
a(x-a) (x-B)=0,
where a is a non-zero, real or complex number: If we restrict the coefficient of x? to be
| then we get a unique quadratic equation
(x—a)(x-P)=0.
This is the same as
?-(a+Px+of=0.
A quadratic polynomial in which the coefficient of x? is 1 is called a monic quadratic
polynomial (or simply a monic quadratic).
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EXAMPLE 3. If  and B are the roots of the equation 2+ 9x+18=0.
Vxs s Now 2 +9x+18=(x+6)(x+3)
ety a0, . so that the roots are a=-6,p=-3.

find the monic quadratic having zeros

W mi2ab .

SOLUTION. The monic quadratic having o + B? and 20 as its roots is given by Find the sum and product of roots of each of the following quadratic equations

(a2 + B2 2 4 B2). *)
2 - (02 + B + 20f)x + 20B(a? + B) (@) ¥ +9x-8=0 () Y22-dx+ 8 =0
However, we know that . () 32 +9x+4=0 (d) 432 -8x+2=0
a+B=-+2,0p=3. (e) 6 +7x-3=0 (f) 28+31x-53=0
Heiice, o2 +P2=(o+PP-20p=2-6=-4 ® £-6(x+12)=0 (h) ax+34)+289=0
‘This gives o2+ P2+ 208 =2 @) (13 -4x+2=0 () (02 -(03)x+(0.1)=0
i o, 20l + B = - 24 d 2. If ccand B are the roots, compute o + B*, /B + P/ex and o?B + of? in each case.
S i (@) 4 +26-9=0 b) X2~ =0
Hence, from (*) the required quadratic is F (b) ¥ -8x+2
22524 (©) 2246{3x43=0 @ 4+ 5x+6=0
G (€) 9-3x—(xa)=0 (f) Bx-120-22=0
. Fii the the squares of the roots o)
EXAMPLEA4 F”"’":""’"‘“;/’_’{)”’w"'”" e of the Sauares of) ! (®) ¥+3x-20c+7)=0 () &(1+2) + 11x-15=0.
. o b e 3. Find in cach case the monic quadratic having o and B as zeros where aand f are given by
isequal 10 5. | o R . "
SOLUTION. if o and B are the roots of the given equation, then @ a=2.p=3 ) a=22.p= 2
@i Pu—piafimd | © a=3,p=43 @ a=2+2.B=2-V2
We have to find the values of p for which (e) a=06,B=12 () a=3+3n,B=3-\3n
a2+ P2=5. () 0=2+3i,B=2-3i (h) a=nP=e
This gives S=ol+ B =(a+ PP -20B=p*+4. | ) a=v2 +5iB=y2 -5i () a=2ip=-2i
o pz =1 4. Suppose the sum of the roots of
Solving forp, weget p=%1. “r‘"_‘“";:"
EXAMPLE 5. Find the values of a for which one of the roots of A= 3 and their product is 2. Find the values of a and c.
x’+{2¢1*[}x+(ﬂ2+2)=0 s, I!nneoflherml,\;f-z
is twice the other root. Find also the roots of this equation for these values of a. R i FBEH 680
SOLUTION. We may assume that the roots of the given equation are o and 2c. Using ;‘ d : e m = :;ml' Etadalso ui'c YalpEue b
the relations between the ofa dratic equation and its F we have 6. Find the monic quadratic wnh‘roolz aand B, if
@+ 20 =~ (2a+ 1) af =2, o+ B2 =4(a+p).
7. Find a necessary and suffici diti lving only the i in order that
Al \ng
and o 20t =a+2. one of the roots of
The first relation gives ad+bx+c=0, az0
e (2a +1) is the square of the other root.
3 * 8. Find the values of x for which the roots g and h of the equation
Substituting this value of a in the second relation, we get £A-8r+x=0
2(2a + 12 = 9(a® +2). satisfy the condition that
This is the same as g +hi=4,
a’-8a+16=0. Find also the roots of the equations corresponding to these values of x.
Thus we get a quadratic equation for a and this equation has coincident roots a = 4, 9. Solve the equation .
Thus there is a unique value of @ for which the conditions of the problem are fulfilled. A+px+10=0

Corresponding to this value of a, the given equation reduces to given that the square of the difference of the roots is 9.
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10. Given that @ and B are the roots of .
6 -5x-3=0
mumwwmmmu-ﬂzwl"“’-
11. Let @ and B be the roots of an equation
2epx+g=0
and let yand 8 be the roots of
A+Pr+Q=0.
Express (a-1) B~ (@-3 3-8
in terms of the coefficients p, ¢. P and Q.
12 Find all the values of a for which the equations
P+ar+i=0 and F+x+a=0
have at least onec common root.

5.5 PROBLEMS LEADING TO QUADRATIC EQUATIONS
We shall consider here vari plcs which ultimately lead to quadratic eq
In the world of applications it is not always that quadratic equations directly appear as
the problem to be solved. Ingenuity is required to recognize them below the outer veil.
EXAMPLE 1. Solve the equation

Jx =x-2.
SOLUTION. We begin by setting y =.4/x . Then the given equation reduces to a
quadratic equation

Yoy-2=0.
The solutions of this equation are
y=2,y=-1L
This gives two values of x, .
. x=4,x=1.
However, as per our convention Jx is the positive square root of x whenever x 2 0.
Therefore
x-2=Vx 20.
The only value of x satisfying this is x = 4.
EXAMPLE 2, Solve the equation
X' -202 + 64 =0.
SOLUTION. Again the equation is not directly quadratic. If we set y = &%, we get a
quadratic equation
’ =20y +64=0.-
The solutions are y = 16 and y = 4. Hence the solutions of the given equation are
precisely those of x* = 16 and x* = 4. Thercfore the solutions are = 4 and = 2.
EXAMPLE 3. A two digit number is four times the sum of its digits and twice the
product of its digits. Find the number.
SOLUTION, Suppose xis in ten’s place and y is in unit's place of the two digit number.
Then the given number is 10 x + y. The given conditions imply that

 Outomans EQuaTons o Exvmesscs
10x+y=4(x+y)
10x + y =2xy.
Substituting the value of y in terms of x from the first equation into the second equation
and thus eliminating y we get,
x?=3x
Solving for x, we have two solutions
x=0 and x=3. ?
If x=0, then y = 0 since the first relation gives y = 2x. Hence 10x + y = 0 and this is not
atwo digit number. If x = 3, then y = 6 and 10x + y = 36. Hence the given number is 36.
EXAMPLE 4. Solve the equation
x4+ (12/x) = 8.
SOLUTION. We observe that o is a solution of the given equation if & is a solution of
the quadratic equation
X2 -8x+12=0.
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Since we can write
2 -8x+12=(x-6) (x-2),
the solutions of the given equation are 6 and 2.
EXAMPLE 5. Solve the equation
P+ U -8x-Ux)+ 14=0.

SOLUTION. Since X+ 1/ = (x - Ux)* + 2,
the given equation can be written in the form

(x=1Ux)-8(x =)+ 16 =0.

If we put y=x-l/x,
we get a quadratic equation
¥ —8y+16=0.
It has a repeated root y = 4. Thus we get the equation
x-lix=4.

This is the same as

¥-dx-1=0.
The discriminant of the equation is D = 20 > 0. Hence the equation has the following
real roots:

a=2+5,p=2-45.
These are pi ly the sol of the given
EXAMPLE 6. A right angled triangle is such that its hypotenuse is 1 cm. longer than
its base and the altitude is | cm. shorter than half the base. Find the base, altitude and
hypotenuse.
SOLUTION. Let us denote the lengths of the base, the altitude and the hypotenuse by
x, y and h respectively. The given conditions imply that

y=(x2)-landh=x+1.

Using Pythagoras’s theorem, we get a relation between x, y and h;
K =xt+y2
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This reduces to- (+R =2+ (@) -

Simplification gives - 12x=0. ) -
Thux-Oorxslz.Weanmjoctx=0.sincemehueoflmanglecmnotbe 0.
Hencex-lZcm.andlhisladstoh:l3cm..y=5cm.

ENFRCISI

1. Solve the following equations
(@ #-102+9=0 () ¥*-62+1=0
(© (1=x)x+2)x+3) =92 - +4(2-7x)
d P-F+x-1=0 (e) x-7x=6
f) x+2Ux=242 (@) 2-82=7

) Jr+fiv2x =1 @ Ja-x+fx+9 =5
W J3}+10+J6-x‘ =6 ® R+ D) -4(x+10)+6=0

) @+ 1) -8 (x=1x)+13=0.

2, mnnmbaof:qmecndmeuﬁinlhemohmnnskismemLuhenumber
of centimetres in the perimeter. If the diagonal is 3J/5 cm., find its sides.

3. The sum of two numbers is 6 and the sum of their reciprocals is 3/4. Find the numbers.

4. The sum of an integer and its reciprocal is 10/3. What is the integer?

5. mmmotsquuuofmonumheniseqmlmslimﬁlhcirsum.'!‘twsumoflhc
reciprocals of the squares of these two numbers is equal to 5/18 times the sum of the
reciprocals of the given numbers. Find these numbers.

6. The product of two consecutive even integers is equal to 24. Find these integers.

7. Suppose the sides of a right angled triangle are x, x + 7 and x + 8. Find the area of the
triangle.

8. Solve the equation

Ux+5/x +2) =9(x+4).

9. A farmer has a rectangular garden of total area 80 sq. meters. He requires 36 meters of
barbed wire for fencing it. Find the dimensions of the garden.

10. Determine the values of k for which the equation

- L+x+2 -
3+l
has both roots real.
11. Find all integers a such that
(x-a)(x-12)+2
can be factored as (x + b) (x + ¢) where b and c are integers.

5.6 BEHAVIOUR OF QUADRATIC FUNCTIONS

A function of the form

fix)=ax+b,a#0 )
is called a linear function. As we shall observe in chapter 7, the graph of such an
expression always represents a straight line on a coordinate plane. As such, its behaviour
is completely determined. If this line meets the x-axis at some pointy xy, and if f(x,) < 0
for some x, < xo, then we have

axg+b=0
ax +b<0
and these imply axy > ax,.
But since x; < xo, we must have a > 0. This in turn implies
Sfix)=ax+b<ay+b=f(y)
for any x < y. Thus fis an increasing function (see Fig. 5.6).
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= axis
y=ax+b=f(x)

(xo. 0) X = axis

x. fx)

Fig. 5.6

Similarly, if f(x,) > 0 for some x; < X, then fis a decreasing function. The student is
advised to carry out the argument.
A function of the form

fymald +bx+c. az0 Q)
is called a quadratic expression or a quadratic pol ial. Let us ider the
polynomial.

33+ 2x+1

The discriminant of this polynomial is D = — 8. Hence this polynomial has no real
zeros. So the graph of the function
[ =3 +2x4 1
does not meet the x-axis. This implies that the graph of fix) lies completely in the
upper half-plane or lies ly in the lower half-plane. In turn, we conclude that
f(x) is positive for all values of x or negative for all values of x. But f(0) = 1 > 0.
Therefore, f(x) > 0 for all values of x.
On the other hand, let us consider the polynomial

3+ 20— 1.
Its discriminant is 16 so that it has real zeros. These are
a=-1,p=13

Thus the graph of
g =3+ 21
cuts the x-axis at - | and 1/3. Since g(x) has no other zeros, the graph of g(x) does not
meet the x-axis at any other point (see Fig. 5.7).
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y=axis

y=3x+ 2x- 1 =g(x)

-1.0) 0,0)] (173,0) X = axis

- Fig.5.7

Thius the graph of g(x) passes from one y half-plane 6 the other y half-planc at both
and B. Since g(x) has no zeros between a and B, the graph of g(x) remains in the same
y half-plane for & < x < B. The factorization

I+ 22— 1=3(x-13)(x+1)
shows that :

g(x) <0 if-l<x<V3,

gx)»0 ifx<-lorx>1/3.
Thus the graph of g(x) lies in the lower half-plane for — 1 <x < 1/3 and it lies in the
upper half-plane if cither x > 1/3 or x < - . We infer that the graph of g(x) passes from
positive to negative at & and from negative to positive at B, as we move from left to
right along the x-axis.

This type of behaviour is true of any quadratic polynomial. Let us, begin with the

general quadratic polynomial

fx)=a+bx+c,az0. (3)
Let o and B be the roots of the equation
ad +bx+c=0. “)
Suppose the discriminant D given by
D =b*-4ac

is non negative. Then the equation (4) has real roots; & and B are real in this case
Assume a < f. Then the equation (4) has no roots either between o and B, or before o,
orafter B. Hence the graph of f(x) cuts the x-axis at & and B, and at no other point. This
implies that the graph of £ (x) lies in one of the upper and lower half-planes for x <
and x > B, and lies in the opposite half-plane for & <x < .
Now we can write
fW=ax-a)x-P) (5)

and therefore
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af(x)>0 ifeitherx<corx>p,

af(x)<0 ifa<x<P.
This determines the sign of f(x) provided we know the sign of a. If a > 0, then f(x) > 0
if x<oorif x> B and f(x) < 0if o< x < B. Thus if @ > 0, then the graph of f(x) passes
from the upper half-plane to the lower half-plane at & and passes from the lower
half-plane to the upper half-plane at . Similarly, in the case a <0, the behaviour of the
graph of f(x) is reversed. Thus the sign of a pletel ines the b iour of
the quadratic expression (3), provided the equation (4) has only real roots.

Suppose D < 0. Then the equation (4) has two roots & and @ . where @ is: the
complex conjugate of a. If ot is of the form
a=s+it

where s and  are real numbers, then

o =s—il
We can write again
flx)=alx-o)x-a)

=alx-s—it (x-s+in)

=al(x—s?+ P}
The expression in the braces is positive for every value of x. Hence f(x) > 0 for all xif
a >0, and f(x) < 0 for all x if @ < 0. This shows that the sign of f(x) is completely
determined by the sign of a. We record these observations.

Any quadratic expression f(x) = ax* + bx + c has the same sign between its real
zeros and changes sign only when the graph of f(x) passes through any of its real
zeros. If f(x) has no real zeros, then f(x) has the same sign for all real values and the
sign of f(x) is determined by the sign of the coefficient a.

If the equation

a+bx+c=0
has real roots ¢ and P, then we have the factorization

axd +bx+c=alx-a) (x-B). (6)
Thus the quadratic polynomial ax* + bx + ¢ can be written as a product of linear
factors, each linear factor having only real coefficients. If the given equation has no
real roots, then a factorization of the form (8) with a and B real is impossible.
Nevertheless., we can find a factorization of the form (8) with complex o.and B (In fact
B = @). If the quadratic expression ax® + bx + c is such that it has no factorization of
the form (8) with real o and B, then we say the polynomial ax® + bx + c is, irreducible
over R. Since the given equation has real roots if and only if the discriminant is non-
negative, we conclude that ax® + bx + ¢ is irreducible over R if and only if the
discriminant D = b* — dac is negative.

All the relevant properties of the quadratic polynomial f(x) = ax® + bx + ¢ are given
in Table 5.1.




- Gradianos w0 T 0 Pre-Couzae MaTwouwcs |

TABLE 5.1

Real roots & < f f)>0forx<a
<Ofora<x<P

>0forx>p

2 a>0 D=0 Real roots a = f f(x)>0forx<a

=0forx=a

>0forx>a

3 a>0 D<0 | Complexrootsa, @ | f(x)>0forallx

4. a<0 D>0 Real roots ot < B fx)<O0forx<a
>0fora<x<f

<0forx>B

L 3 a<0 D=0 Real roots = flxy<Oforx<a

=0forx=a

<0forx>a

6. a<0 D<0 Complex roots &, @ | f(x) <0 forall x

EXAMPLE 1. Find the values of x for which the inequality
P-x-2<0

is true.

SOLUTION. We observe that 2 —x-2=(x-2)(x+1).

Hence the inequality is true if the values of the two factors have opposite signs.
Thus either x—2<0,x+1>00rx-2>0,x+ 1 <0. There is no x for whichx-2 <0,
x+ 1> 0is true. Hence the set of values of x for which the given inequality is true is
-1 <x <2, We can also infer this from Table 1. The leading coefficient a > 0 and the
discriminant D > 0. The zeros of x* — x — 2 are - | and 2. Hence x? -~ x - 2 < 0 only
between the zeros — 1 and 2; i.e., - 1 <x<2.

EXAMPLE 2. Find all the values of x for which the inequality
x2-2x-1
x+1
holds.
SOLUTION. The given inequality is equivalent to
x*-2x-1
x+1
Hence it is sufficient to find those x for which
-3x-1
x+1
is true. Equivalently, it is sufficient (Why ?) to consider the inequality
=Cx+ Dx+1)<0.
Hence either both (3x + 1) and (x + 1) must be positive or both must be negative. Hence
the set of values of x for which the given inequality holds is x>~ 1/3 and x < 1.

-x<0.

<0
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De in each of the following prob the set of values of x for which the given
inequality is true.
1 2 +4x+12>0 2. P-4x+3<0
3. 9%-6x+120 4. (1/4)2-3(x+5)<0
5. dx-3)-2<3x-(22+2) 6. x(x-1)-6>5x-x*
7. 21-7(2x-9)> 72 8. 173 (x=2) < 3/5(2 + 4/3)
9. 3¢ -5x-850 10. (2% - 16x)* ~ 63 2 2(* - 16x)
G-D&x-7)
— Ay —x~
1. -4y -x-2)<0 12. o0
2x-1 £ -Tx+12
B, G0Ge—96-9 1 W T iaxes 70
1x-5 2-9
2 0 e T
S 8x+3 = 16 3= -2 =0
x-1_x+l _, LI (1 |
I =
19, — o O 20, 1@ +3x122-2
¥+l x+2 x-1
4
—_—2lx+2l
ZL lx+31-1 o
1. Let p(x) and g(x) be two quadratic poly ials with integer Suppose they
have a non-rational zero in common. Show that
Px) = rg(x)
for some rational number r.
2. Leta, b, c be integers, and suppose the equation
fix)=ad +bx+c=0
has an irrational root r. Let u = p/q be any rational number such that {u - r |1 < 1. Prove
that «
[l,suuuskm-rl]
pe
for some constant K. Deduce that there is a constant M such that
P21 > mig
q
(This is useful in approximating the tional zero of a p by a rational

number)
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15. Find the real roots of

"xd—}-lm + ‘)x+8-6J;——l‘ =1

16. Let p(x) be a quadratic polynomial

3. Find the value of the positive integer 7 for which the quadratic equation

.
Zuu-l)(nh =10n

k=l
has solutions & and & + 1 for some & . px)=a +bx+c
4. Let p(x) be a monic quadratic polynomial over Z. Show that, for any integer n, there such that | p(x) 1 S | for | x| < 1. Prove that
exists an integer k such that lex+bx+als2
3 plnyp(n + 1) = plk). forlx1<1.
5. If the equations 17. Suppose o is a real root of the equation
Rabr+c=0, b+cx+1=0 ad+brtend
have a common root, prove that either and B is a real root of the equation
b+c+1=0 —ax +bx+c=0
(00) Perl=be+btc _ show that the equation
6. 1f the roots of the equation x? + bx + ¢ = 0 are real. show that the roots of the equation @R+ Br+ 0
5, -ﬁfhx0¢~(x+a)(2:4b)=b06 has a root lying between ot and B.
“""""‘?‘”"‘_"mmd“"m . . 2 18. Lelp(x)=ax’+bx+cbesuchmnlp(x)ukeerealvaluaformlvnlnesofxandmrul
7. Find all positive integers 7 for which the quadratic equation values for nonreal values of x. Prove thata = 0.
ns1 n 19. Consider the number
Gpo X = 2X ZaE+Zn, =0 .
k=l k=1 n+dn® -4
has real roots for every choice of real numbers aj, @y, ... Gy 4 |- ¥ o 2
8. Let the polynomial p(z) = 2% + az + b be such that a and b are complex numbers and | p(z)
1= 1 whenever | z1= 1. Prove thata =0 and b = 0. where n 22 and m are natural numbers, Prove that
9. Find necessary and sufficient conditions on the coefficients a, b, w so that the roots of the k+Jk2-4
equations a=—>—
§ 2 EMEFD RO, TEWR g for some natural number k.
are collinear in the plane. 20. Let p(x) = ax? + bx + ¢ be a polynomial in R(x) such that p(e)) | < 1 for la 1< 1.
10. Find necessary and sufficient conditions an a, b, ¢, d so that the equations. Prove that 1200 +biSeforial<t.
F+az+b=0. F+cz+d=0 21. 1f aand b are positive reals, prove that
are collinear in the plane. ;
11. Determine all quadratic polynomials p(x) with complex coefficients such that the a + i - ! % _I[; =0
X x-a x-

is a zero of p(x) iff — & + i is a zero of p(x) (Here & and P are real numbers).

12. Let ax® + bx + ¢ be a quadratic polynomial with real coefficients such that has two real roots, one between a/3 and 2a/3, and another between — 2b/3 and - b/3

la?+bx+clsl for 0sxs<1, 22. If a. b, ¢, p, q. r are real numbers such that
Prove that ax +bx+c20,
lal+lbl+lcI<SIT. *) pr+gx+r20
Show that the equality can hold in (*) by constructing an example. for all real numbers prove that
13. Let p(x) be a quadratic polynomial such that for distinct reals & and B, apx? + bgx + crz0
pla)=opP)=p for all real x.
show that a and B are roots of
plp())-x=0
and find the remaining roots.

5.

Solve the equation ‘}a = ,ja +x =x
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TRIGONOMETRY

6.1 INTRODUCTION
Tri; y means of Triangles'. It is a word derived from Gonia, a
Greek word, meaning, an angle. This science was nurtured on Indian soil for a number
of centuries by Hindu scholars like Aryabhata (Sth Cen. A.D.), Varahamihira (6th Cen.
A.D.), Brahmagupta (7th Cen. A.D.) and Bhaskara (12th Cen. A.D.); but later it passed
on to the west through the Arabs. After the 16th Century modern Trigonometry took
shape out of the works of European mathematicians like Vieta (16th Cen. A.D.), Euler
(18th Cen. A.D.) and others. Though originally it was confined to a study of the relations
between the sides and angles of a triangle, in modern times, it has given rise to
thy ical ions of angular itudes, through the medium of which many
kinds of g ical and algebraic i igations are carried out in every branch of
Mathematics and its application. We shall begin the study of Trigonometry by a comment
on one of the most inati. bers in Math ics, namely, the irrational
number, .

Take a circle of any size. Measure, if you can, the length / of the circumference of
the circle. Measure also the diameter d of the circle. The ratio //d is always the same
whatever be the circle. This is a mathematical fact, but the proof of this is beyond the
scope of this book. This constant number //d or

Circumference of a circle
" Diameter of the same circle
is denoted by . Its approximate values are
B,E—s-, 3.1416, etc.
77113

Consider now a circle, centre O, radius r. Let A be a fixed point on the circle and P
a variable point. Suppose P is initially at A and moves along the circle, say in the
anticlockwise direction. By the symmetry of the circle, we may assume that the angle
AOP subtended by arc AP at O is proportinal to the length of the arc itself (we cannot
assume such a thing, for example, for an ellipse, in which equal arcs generally subtend
unequal angles at the centre).

Definition. In a circle, the angle subtended at the centre by an arc of length equal to
the radius of the circle is called a radian.

Consider a circle centre O and radius r (see Figure 6.1). The circumference of the circle
itself can be considered as an arc of the circle and since its length is 1t x diameter, that

Fig. 6.1

is, 2 7, it subtends an angle of 27 radians at the centre. But this angle is also equal to
360 degrees. Hence

2w radians = 360 degrees, ‘
or = radians = 180 decrees.

Notation x radians is denoted by the symbol x°.

1= B e X i5 ; '
Thus = and 1 18()Al'{ervc ¢ stands for circular measure:

From the first of these relations, it follows that one radian is 57° 17° 45”
approximately. [1 degree = 60 minutes = 60 and 1 minute = 60 seconds = 60”).
Recall the representation of angles in the xy-plane, of various sizes, and of both
positive and negative directions, described in the beginning of Chapter 3. In particular,
also note that if two or more angles have the same final position in such a representation
(e.g..40°, 400°, and -320°), they are said to be coterminal.
CONVENTION : In connection with angles, if no unit of measurement is mentioned,

the radian is to be understood,
EXERCISE 6.1

Let in a circle, radius r, centre O, an arc AB of length / subtend an angle ¢ at the centre.
Show that (@) / = r8 and (b) area of sector OAB = (1/2) 8. What are the corresponding
formulae if angle AOB = 8°?

. Two cities lying on the equator are separated by a distance of 120 miles. What is the
longitudinal difference between them. (Radius of the equator may be taken as 4000 miles.)?
What is the angle in radians between the hands of a clock when the time is (a) 3.20 (5) 4.20?
Assume that the moon's radius is 1800 km. If it subtends an angle of 32’ at the eye, what
is its distance from the observer? What assumptions are you making?

o

-

6.2 TRIGONOMETRIC FUNCTIONS OR RATIOS
Let 8 be any angle positive, negative or zero represented in the xy-plane by angle AOB.

Choose a point P on this final position OB, P# O and let P = (z, y), OP = r. We shall
take  to be positive always. The Trig ic (or circular) fu of @ are defined
as follows:
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me:.l,cosi:nee: £,
r r

tangent 8 = %.oonngemﬁ:

<Y =

secant @ = —, cosecant 6 =
x
These functions are abbreviated to sin 8, cos 8, tan 6, cot 8, sec 8 and cosec 6.
When x =0, tan 6 and sec 6 are undefined. When y =0, cot 8 and cosec 0 are undefined.
When 8 is an acute angle we can define these functions in terms of the sides of a
right triangle (figure 6.2):

opposite side _ PQ _

= hypotenuse ~ OP !
adjacent side 0 _
R0 8 =,

oppositeside _ PQ _ y
00 acemsice 00

r
X
hypotenuse  OP  r
b4
X

cotf= e ==

~ oppositeside  PQ y

hypotenuse _ OP _ r

#o0F Cceninde 00 &
hypotenuse _ OP

Fig. 6.2

Notation. The powers (sin 8)", (cos 8)" ... are usually written as sin", cos"d....
Basic Identities satisfied by the circular functions:

If 8 is any angle,

L. (a)sinBcosecB=1, (b)cosBsecB=1,
(@ an 6= jﬁ :

(c)tanBcot6=1,
0s 6

e 2
sin@

[ macnuery | 565

. (a)sin?0+cos® =1, (b) 1+ tan?0 = sec?,
(¢) 1 + cot?® = cosec?d.
These relations make sense only for those values of 8 for which the functions involved
are defined.
Proof. I (a) - (e) follow from the definitions.
1I follows from the relation x* + y = 2, which is obtained from
Pythagoras’s Theorem. (See Fig. 6.2).

EXERCISE 6.2

1. Show that for any angle @, Isin 01 < I, Icos B1 < 1,
Isec 81 2 1, lcosec 81 2 1.

2. Find the set of values of 8 for which the following ratios are not defined, (a) tan 6
(b) cot 8 (c) sec B (d) cosec 6.

3. Show that the trigonometrical ratios of coterminal angles are equal.

4. Find the ratios of 0, 90°, 180°, 270°, 360° and verify that your values agree with the
following table:

TABLE 6.1
angles|, 0 | ‘90" 180° « 270° +#:360%

sine 0 1 0 -1 0

cosine 1 0 -1 0 1

tangent 0 not defined 0 not defined 0
cotangent not defined 0 not defined 0 not defined

secant 1 not defined -1 not defined 1
cosecant not defined | not defined -1 not defined

Prove the identities (5) - (12)
sec’ B + cosex sec? . cosec?® = (tan 6 + cot 6)°,
6. (sin 8 + cosec 8)° + (cos B + sec 8)* = 5+ (tan 6 + cot 8)2.

»

1-cos A 2
= (cosec A —cot A).

I+cos A

anA-secA+l_1-sinA

8 nAtsecA-1 cosA
9. (1 +sin x+ cos x)* = 2(1 +sin x) (1 + cos x).

sin'®  cos’®
10. +———— =1 +sin0Bcos 6.

1-cot® 1-tan@

4 4

sin’ 6 cos' 0

1 + =1 +sin 0 cos 0 - sin? B cos? 0

1-cot® 1-n@
12. 2 (sin® x + cos® x) = 3 (sin* x + cos* x) + 1 = 0.

13. Consider an isosceles right triangle OAB, in which ZAOB = 90°, OA = OB = a. Use
Pythanoras's theorem to evaluate AB and hence find the rations of 45°. The values are
given in Table 6.2.
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Consider an equilateral triangle ABC iin which each side is 2a. Draw AD perpendicular to
“‘ BC. Un;wn‘lmmmwmdhmﬁndﬁnnﬁuufw and 60°. The

values are given in Table 6.2.
TABLE 6.2

tangent | cotangent | secant

| B | b 2

1 1 V2 2
V3 3 2 243
15. Show that the definitions of the ratios are independent of the choice of the point P on

08 (figure 6.2).
16. Find the signs of the six trigonometric ratios of angles in different quadrants and verify

that the signs agree with the following table.
TABLE 6.3

17. 1fcos 8 =kand 8 is an angle in the second quadrant, determine the remaining ratios of .

it -3M3ﬂ2 02 & 16 -2 5in 0 + cos 6
o <O <A eV Ty 4 sec 0 + 6cosec O

6.3 TRIGONOMETRICAL RATIOS OF 90° + 6, 180° + 0, 270° + 6,
360°1£6,-6
In figures 6.3, 6.4, 6.5 and 6.6, the position of 90° - 6 is shown for various positions
of .
»

0O

Fig. 6.3 Fig.6.4

The reader is advised to draw similar figures showing positions of 90° + 0,
180° £ 6, 270° £ 6, 360° + 6, — 8 for various positions of 8, i.e., for positions of
@ in each of the four quadrants. Now we wish to express the ratios of 90° - 8 in
terms of those of 8 themselves.

Let us take the case when 90° < 8 < 180°, that is, when 8 is in the second quadrant.
If angle AOB represents 6, then angle AOB’ = 90° — @ is in the fourth quadrant as
shown in Figure 6.7. If P and Q are points on OB and OB respectively such that
OP=0Q=r,and P’ and Q' are the feet of perpendiculars from P and Q respectively to
the y-axis and x-axis, then it is easy o see that AP’OP is congruent to A Q’0Q. So 0P}
=10Q" and IPP| = 10Q'1. Consequently if P = (x, y), then Q = (y, x). Hence

’ y
B

Fig.6.5 Fig. 6.6

sin (90° —8) = x/r = cos 6,
c0s (90° - 8) = y/r=sin 0,
tan (90° - 8) = x/y = cos 0,
cot(90° - 8) = y/x = tan 6,
sec (90° - 8) = rly = cosec 6,
cosec (90° - 8) = rix = sec 6.
Just using the relation sin (90° - 8) = cos 6, one can deduce the other five relations
(how?). The same relations can be proved to be true, when 8 is in any other quadrant.
Similarly the ratios of 90° + 8, 180° + 6, 270° £ 8, 360° + 6, (- 6) can be obtained in
terms of those of 6. Table 4 helps one to read off these ratios.

¥
P(x.y) P
= |
0 N o 4
o x
90°-
Q0%
B
Fig. 6.7
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+0 and 0 are the same since these two angles are co-terminal and
nd — 6 for the same reason. The reader is advised to prove

validi i it look at the table,
the validity of all these relations for at least one position of 8. If we table,
we see ma‘{rke ratio itself changes in the presence of 90° and 270° and does not in the

other cases. Further the sign depends on the angle we are considering.
y angle to those of an acute angle;

Theublcalsohelpsuslomducelhemiosofan
in fact to those of an angle 8 where 0< 0 < 45° (how?).

The ratios of 360°
50 are the ratios of 360° - 6

EXAMPLE 1. (a) sin 135° =sin (180° - 45°) =sin 45° = 7';
(b) sec 240° = sec (270° - 30°) = - cosec 30° =~ 2.
(c) tan (8 - 180°) = —tan (180° — 6) = tan 6.
(d) If A, B, C are the angles of a triangle, then cos (A + B) = cos (t - C)
=-cos Cand

sin [B ; C) = sin (112 - A/2) = cos, A2.
(€) sin (<1230°) = - sin 1230° = - sin 150°,

1
=—sin (180° - 30°) = - sin 30° =~ 3

TABLE 6.4
sine cosine tangent cotangent secant cosecant
90°-96 cos @ sin cot @ tan 6 cosec 8 sec O
90° +6 cos @ —~sin ~cot® ~tan 0 - cosec B sec 8
180° -6 sin @ ~cos O ~tan 6 —cot 8 -sec O cosec 8
180°+ 6 ~sin @ —cos 0 tan 6 cot @ ~sec® | —cosec®
270° -6 —-cos @ ~sin 6 cot@ tan 6 ~cosec 6 —sec @
270°+ 6 ~cos B sin 6 ~cot® —tan 6 cosec 0 ~sec B
360° -6 ~sin @ cos O —tan 6 ~cot§ sec® | -cosec®
360°+ 0 sin @ cos 8 tan & cot @ sec 0 cosec §
-8 ~sin @ cos 8 ~tan 6 —cot @ sec® | —cosec 8

EXERCISE 6.3
1. Simplify

@ sin(180° + 0) cos(270° — 6) cot(® - 360°)
cos(8 - 90°) sin(360° - 6) tan(270° +6)

sin?(90° - ) +sin”(90° +6) ~ 1
1-cos>(270° - 8) - cos*(270° +8) *
© $in(540° — A) cos(-90° + A) tan(270° - A)
cosec(1170° + A) sec(540° + A) col(-90° - A)

®)
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2. Express as trigonometric ratios of acute angles and determine their values.
(a) sin 1410° (b) cos (-2040°) (c) tan (- 510°).
(d) sec 56m/3 (e) cot (- 117/6) () cosec 23n/3.
If ABCD is a quadrilateral, then show that

w

B+C ' A+D
o0 =

(a) sin(A +B) +sin(C+D)=0, (b) cos + 0.
0 .

A+C B+D
=cot ——,
4 4
. Show that if n is any integer, then
(a) sin (am+(=1y"A) =sin A, (b) cos (2nm+A)=cos A.
(c) tan (nm+A)=1anA. (d) sinnn=tannn =0, cos nx = (- 1)".
(e) sin(2n+ 1) W2 =(-1)",cos (2n + 1)n2 = 0.
(f) sin (mm+A) = (= 1)"sin A, cos (n% + A) = (= 1)" cos A.
. Show that
tan 1°tan 2°tan 3° .. tan 89° = |,

(c) tan

FS

2

6.4 FUNCTIONS AND THEIR GRAPHS

Recall that a function f from a set A to a set B, denoted by f: A — B, associates to each
element of A a unique element of B. The set A is called the domain of fand the set B the
co-domain of f. If xis an element of A which is associated by fwith (or mapped to) the
element y of B, we say y is the image of x under f and write fix) = y.

Here are a few examples.
EXAMPLE I.LetA={a.b,c,d e]and B= {p,q.r,s,1,u}. Let[: A — B be given by
fla)=r.fib)=p. flc) = r, fid) = q. fle) = u. We may represent fby a Venn diagram as
in Fig. 6.8

ﬁc set of elements in B which are images of elements in A is called the range of f
and is denoted by Ran £, Im for fA). That is, range of f = {fix) | x € A} c B. In the
foregoing example, Imf = (p, q, r. u). '
EXAMPLE 2. Let f: N — Z be defined by f (n) = {:: ::::::‘:;

Here Imf={-1,1}.

We are generally interested in functions defined on R or its subsets such as intervals
(open, closed or semiopen) or their union and taking values in R.
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EXAMI’LES.lnf:l—;Rbegivnbyﬂx):x‘fwxinR.Weobsa‘vedmlrgu]:
{0, =).
Wenyaﬁ-elion]:A—»Bisonz-ouiﬂdiﬁetwldemlsinAlnvediﬁ'mm
images, thatis, x;, X, € A.x, # xaimplies f(x;) #f(xp) ; or equivaleatly. x;, X2 € A, fix))
=ﬂx;)inp|isx,=x;1hefmaionfm&nmpk3isnuonem,bewnse,fotinsume,
f2)=f-2)=4. 5

Question: Which of the functions in Examples 1 and 2 are one-one

“knym:ﬁmqion/:A—»Bisonmiﬂ'everyclaneminBismeinngcofsome
element in A; or equivalently, Imf=B.

Th:fmwﬁmh&xmk}isnmmmei&a.mmnegaﬂveml number in
the co-domain is an image under f. Are the functions in Examples 1 and 2 onto ?

Aﬁmcﬁon/:A—)Bisnidlnbeb«)‘eaiwiﬁﬁsbodlomandonw.
EXAMPLE‘.baf:R—)Rbegivmbyﬂx):?.l—lforxink.Thisisbothone-one
and onto (why?) and so fis bijective. g
EXAMPLE 5. Letf: N — N be givea by fix) = forall xin N.

This is one-one but not onto. So fis not bijective. Note that in Example 3 we had the
same defining relation for f, namely fix) = x, but, there f was not one-one. So the
deﬁningr:hﬁmalmedoano(dﬂmnineone-ou—mof].
EXAMPLEG.[A]:R—»Rbegivenbyﬂx):sinxfo(anxink

This is called the sine function. Here x may be taken to be in degrees or better in
radians, Thus the relations sin 0 = 0, sin %6 = 1/2, sin (-%/3) = ~V/372 describe the
images of 0, %/6 and ~x/3 under the sine function. Here fm f=[-1. 1] and so fis not
onto. Also f is not one-one either as fl0) = fix) = fi2x) = ... = finm) = .. = 0.

Similarly we have the cosine function, tangent function and so on. Note that for the
unpuﬁmien.lhedonninisnmallofk.lnfncl,lhef\lnctiondﬁcﬁbeslhetangenl

9

fiR={@n+1) —;Ine Z) >R, fi)=tanx

function. The tangent function is not defined at odd multiples of %/2 and so these are
excluded from the domain. Also /m f = R and so the function is onto. Is it one-one ?
As stated before, our main interest is in functions defined on R or intervals and
taking values in R. Such ions are called real-valued ions of a real variable.
Thcymol‘dnfmn/:x—»R.XcK‘l‘lmemnqionscanbercpresemedinmc
Ay—phnebycmvcsorwphsmdumallyjuﬂbylookingalmegnphufamlfuncuon.
we can obtain a lot of information. The graph of a function /= X — R, X c R is the set
ofyoinlsl(x.ﬂx)lxeX]inlhex)'—plan&ﬁwnhu'my:ﬂx)islhcequalionoflhc

graph.
EXAMPLE 7. Let f: R — R be given by fix) = £ for all xin R.

The equation to the graph of this function is y - x* and the graph has already been
shown in Figure 5.3 of Chapter 5.

Suppose we draw a line parallel to x-axis and it cuts the graph of y = fix) in more
than one point. What do we conclude? We conclude that f is not one-onc. Thus f in
Examph?isno(ow—one.sineeevcrylimpanllcl to the x-axis and lying above it cuts
the graph in two distinct points (x;, x;%) and (~x;, x;%).
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These straight lines themselves are not a part of the graph. The points

x= ﬂ;—l)!t.ne z

are precisely the points at which the graph is not only discontinuous but at which the

function is not defined at all.

Table 6.5 _ives the variations of the six trig i ions in the four g
With the help of this table one can draw the graphs of the remaining trigonometric
functions (see the exercises).

AL

As 8 increases from 0 to /2,
sin @ increases from O to |

As 0 increases from %2 to %,
sin O decreases from 1 10 0

cos @ decreases from 0 to -1
tan  increases from —co to 0
cot  decreases from 0 to —e=
sec @ increases from - to -1
cosec 0 increased from 1 to e

cos @ decreases from 110 0
tan 0 increases from 0 to e
cot O decreases from 0 0
sec O increases from 1 1o =
cosec 8 decreases from e to |

As 0 increases from x to 3W/2,
sin 0 decrease from 010 -1

cos 8 increases from -1 10 0
tan 0 increases from 0 to =

cot B decreases from «'to 0

sec O decreases from ~1 to —eo
cosec o increases from —eo to ~1

As 0 increases from 32 to 2x,
sin @ increases from -1 to

cos 8 increases from 0 to |

tan 8 increases from -0 to 0

cot 8 decreases from 0 to —eo
sec O decreases from e 10 |
cosec O decreases from -1 10 —o0

We recall that if f is a bijective function from A to B, then we can define another
function g from B to A in a natural way such that gof : A = A and fog : B — B are the
identity functions on A and B respectively. (For the definition of the composite function
fog, see No. 7 of Exercise 6.4). The function /y: X — X defined by /,(x) = x for every
x € Xis called the identity function on X. In fact, if we define g : B — A by g(y) = x iff
fix) =y, for each y in B, then g satisfies gof = I, and fog g = I. Further g is the only
function which has this property and is called the inverse of fand is denoted by f L3 1
is seen that f-': B — A is also bijective and (f~ Yl=f
Also, f)y=yifif' () =x

‘ Iff: R — Ris given by fix) = 2x - 1 for each x in R, then it is casily
verified that f is one-one and onto. The procedure by which we verify that f is onto
“generally gives the expression for f~'. If ix) = y for y in R, then 2x - | = y and so0
x=(y+1)/2. Since (y + )/2 is a real number, we see that f'is onto. Also f'is given by
£ () =(y+1/2foreachyinR.
This may be rewritten as
£~ (x) =(x+ 1)/2 for each x in R.
Now draw the graphs of f and f~!, that is, graphs corresponding to the equations
y=fx)and y=£"! (x). What do we observe? We see that the graphs are mirror images
of each other relative to the line y = x. This is always the case.
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I:lou(dov:e‘hg:tmidc'aoflhenngeoflﬁmcﬁonﬁvmiugnph?wnsulwlhe'
projection o edmfmw7mlhy~lxismdemninewhichpmofm
ﬂ-‘:xlsllf cover :y‘ddlﬂ projection. We see that the whole of the positive y-axis and

origin are cove i jection
n“omg; by this proj and so we conclude that /m f = [0, =). So fis
EXAMPLE 8. Let us draw the graph of the sine function given i Exampl

A 3 ! tion given 2
equation of the graph uy-—-smxmdtheyaphiuclﬁsgiv:byF;;js. e

mmcurv:;:oks like a wave extending in cither direction of the x-axis to infinity .
and not go above y = I or below y = ~1. This is because the range of the function
is [-1, 1]. The function is neither one-one nor onto.

EXAMPLE 9. Let us draw the of the i i :
el e e S S

T‘heequa!ionOf!hcmphisy=unxandthegnpbisasgivcninFlg.G.IO,

y
=L - 1
% =z
2 ? . m/\
o B B "3 \_/ =
1 2 &5
Fig. 6.9

" The graph consists of infinitely many disjoint branches each lying between the two
nes

(2n-Dx Zlfl)x
x= "y —

3 . 2 =021, 22, ...
¥
L] 3= == 3
2 2 2 —,2! T‘ %
2% -x 0 " n 5 2
Fig. 6.10

T RGONOHETRY. Rs
[0 AN LT Letf: R = (0, =) be given by fix) = 2%, for each x in R. Observe that

fisa bijective function. The inverse function f': (0, ) — R is given by

S (x) =logs x, for x in (0, ).
Draw the graphs of these functions and observe that they are reflections of each other
with respect to the line y = x.

.1, The logarithmic function introduced in thi: i i
Malhcmati;s and its npglicuionsA When the base ils‘ l?::sﬂﬁ’d'; ’-';"::ﬂE.::;:;dl'lo.n;
corresponding logarithmic function is written as simply, log x. When the student goes to higher
levels of Mathematics he will see the need to write it fully as log;ox.

= ws“p?:xsc we 'I_lavc a function f: A — B which is one-one but not necessarily
onto. Can we produce a function g which is the same as f for all practical purposes but
at the same time has the additional property that g is onto, besides being one-one? Yes.
Simply delete ﬂ'm clements in B which are not, images under f and retain the function
as it is. In precise terms, g : A — flA) given by g(x) = fix) for each x in A, has the
property that g is bijective. This is exactly what we have done in Example 11, to
modify the function f: R — R, fix) = 2 into a bijective function f: R — (0, =2).
Further suppose that f: A — B is neither one-one nor onto. As above fcan
be made onto by deleting elements of B which are not images. How can we make f
one-one also? Tt}cre are two ways. One way is to define f on a suitable partition of A,
but not on A: This altogether alters the domain of f. Another way is to delete elements
of A (in a suitable way) to make the function one-one as in the following examples.
AThe function f: R — R. fix) = x* for each x in R is made onto by
deleting (==, 0) from the co-domain and one-one by deleting (-2, 0) from the domain.
We obtain the function
£:10,90) = [0, ),
fix) = x2, for each x in [0, eo).
(We retain the same name f of the function).
The inverse of fis given by
£ 110, 0) = [0, 00)

£ (x) = vx . for each x in [0, ).
This approach helps us to define the inverses of trigonometric functions [see Section 6].
Sometimes the dependent variable y is not explicitly given by a function .of the
independent vanable, but they are related by an equation. This gives rise to what are
called implicit functions -
Consider the equation
Peyi=d .

This is the equation of a circle with center (0, 0) and radius 2. The graph
is as given in Figure 6.11. The circle meets the x-axis in (2, 0), (-2, 0) and the y-axis in
(0.2) and (0, - 2). The eight points (+ 6/5, = 8/5), (£ 8/5, + 6/5) are also on the circle.
The circle here is the collection of points namely {(x,y) € R?1.?+)? =4},

From the graph, we see that the equation x? + y* = 4 does not define a function as
there are two images for any point x in (-2, 2). This is also clear from the equation
itself, for, if we solve for y, we get
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(0 2)
(2,0 @209 x
©,-2)
Fig. 6.11 )
-
Thus y has two values for each x in (-2, 2).
less, we have a ‘function-like’ In fact, the graph is the union of

the two graphs given by the functions

fil-2,21 >R, flx)= ‘/4— &

and g:[-2.2]—->R,g(x)=—‘/4—xz.

Here f ds to the upper ircle and g to the lower semicircle.

Observe that a graph is symmetric with respect to the y-axis if its equation is
unaltered by replacing x by -x (e.g., y =%, y =x*). Similarly a graph is symmetric
with respect to the x-axis if its tion is unaltered by replacing y by -y, The
graph of the circle above in Example 13 is symmetric with respect to both the axes.

EXERCISE 6.4

1. (@) Determine which of the figures from Fig. 6.12 to Fig. 6.15 represent functions from
AtwoB?

Fig. 6.12

(b) Which fis a function ?
@ f:Z->N,fix)=2 forall xin Z.
) f:Z-Z, fix) =2 forall xin Z.
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i9.515
4 Find the largest domains, as subsets of R, of the following functions.

(a) fix)=log lx. ) fixy= m
© fix)= J9-x’A ) fiy=V
(e) fix)=log sin x. () fix)=log Isin.xl.
5. Draw the graphs of
(@) Id+ii=1 (b) max {Ld, Iy} =1.
© b-y+x+y=2. @ y=al+bx+c.az0.
(e) y~-Isinx.

(Note For (d) consider the five cases a > 0, a < 0 and b* - 4ac <, > or = 0 separately)
6. How are the graphs of the following equations related to one another?

@ ¥=x y=yx y=-{xlyl=

) y=x'y=x""

© y=2 =t W=x, y—m!,

@@f:R-R, ﬂx)- l Szl

md/(x)-Z.wbenx: I.

2.1
@ f:R-(1) >R, f)= Ll :

(i) f:R—>R, fiy=x+1 forallxinR

(W f:R->R, fin=

and fix)=1whenx=1.

7. Iff:A— B, g: B— C are two functions then the composite function gof : A — C is
defined by (gof) (x) = g (fix)) for all x in A. Show that

(i) if fand g are one-one, then so is gof;

(if) if fand g are onto, then so is gof;
(iii) if fand g are bijective, so is gof:
(iv) if fand g are bijective, then (gof) ' =f ' og™'.
Iff: A — Bis a function, then fis said to be a consrant function iff Im fis a singleton set,
lhﬁi_:.iﬂ‘ﬂ,r)=y°for|]lxinAlndforsomeﬁxcd Yo in B. Draw the graph of the

]

f:R =R, fix) =k forall xin R, & being a fixed real constant.

macncaiern _

(i f: N>R, fil= m.fouﬂxinn

(W) f:R-R, fl= ﬁ.fa’aﬂxhl

2. Find the inverses of the following functions whenever they exist.
(@ f:R-R flx)=2 forall xinR.

2%, if
® sRomo= {3 120

(¢) f:R—>R, fix)=Ixl, forall xin R.

@ f=R—>RJ(X)={‘2' xz0
-x, ifx<0.

.

Fig. 6.14

(e) f: (-2, W/2) = R, fix) =tan x, for all x in (-2, W/2)
() f:N—=N,fin)=n>+9n+ 14, forall ninIN.

n+1,if nisodd,
@ SNONAD= | i niseven.

() f:R~(0) > Rfx) = Vx

3. Draw the graphs of the following
(@) y=cosx. (b) y=cotx. (¢) y = cosec x.
(d) y=secx. (e) y=sin 2x, () y=tan’x
® y=li

Tramoner a7

9. Suppose A and B are two finite sets having the same cardinality, that is, having the same
number of clements. Show that a function f: A — B is one-one iff it is onto.

10. Let A and B be two finite sets having m el and n el pectively (m #0,
n#0).

(a) Find the number of all functions from A to B;
(b) Find the number of one-one functions from A to B (m < n);
(c) Forn=2,3 find the number of onto functions from A to B (m 2 n).

11. From the graphs of the sine, cosine and tangent functions, show that the general solution
of sinx=0or tanx= 0'—‘8“""‘7’:=mw)mmsmymwgermddmoleosx:hs
given by

x=(2n + 1) W2, where n is any integer.

6.5 A :RATIOS OF COMPOUND ANGLES

If A, B, C.,... are any angles, then expressions such as A + B, A — B, 2A - 3B + C, 90° - A are
called compound angles. In this section we find expressions for ratios of A + B, A - B,
24 and 3A in terms of ratios of A and B, which will help us handle the ratios of other
compound angles.
Theorem 1. If A and B are two angles, then

(a) sin (A + B) = sin A cos B + cos A sin B;

(b) cos (A + B) = cos A cos B - sin A sin B;

tan A + tan B

l-tanAtan B~ y
Proof. We shall consider only the case in which A, B and A + B lie between 0 and 90°.
Sec Fig. 6.16. In the fi I'gun:AXDY A, ZYOZ=Bboth traced in lheposmvedmecuon.
sothat ZXOZ =A + B. On ray 07, choose a pomr P.Draw PQ perpendicular to oX.
PR perpendicular to 0)’. RS icular to ox. and RT perpendicular to PQ. Clearly

(c)tan (A + B)=

QOSRT is a rectangle, so that OS = TR and TQ = RS. Also ZQPR = ZXOY =A as PQ
and PR are respectively perpendicular to OX and OY.

Fig. 6.16

(a) From triangle OPQ, in which ZQOP=A + B,
PQ PT+TQ _PT | RS
sin@+B)= 50 =50~ 0P ' OP
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it PR.,._R_S.QE =cos A sin B+sin A cos B.
=PR OP OR OP

) 20 _
(b) Again, cos(A+B)= -0 =50 "op 0P OR OP PR oP

=cos A cos B -sin A sin B.
(¢) Further, to prove the last relation, we observe from (a) and (b) that
nn(A+B)=wsAcosB(mnA+unB) and
cos (A +B) =cosAcosB(1- —tan A tan B).
Dividing the first relation by'lhe second we obtain the result.
Theorem 2. If A and B are any two angles then
(a) sin (A - B) = sin A cos B - cos A sin B;
(b) cos (A - B) = cos A cos B +sin A sin B;
tan A - tan B
@un@-B) = Awn B
Proof. One has only to replace B by — B in Theorem 1 and observe that sin (-B)
=—sin B, cos (-B) = cos B and tan (-B) —tan B. Q
EXAMPLE 1. sin (8 + w/4) = sin 8 cos W4 + cos 0 sin /4

=(1/+/2 ) (sin 8 + cos ).
EXAMPLE 2. cos (2A + B/3) = cos 2A cos B/3 - sin 2A sin B/3.
EXAMPLE3. an (4 +8) = 1228
1-tan©
EXAMPLE 4. sin (/4 - ) = sin (1/4) cos 8 - cos (n/4) sin 6
tan 60° - tan 45°
- b o SEDY
EXAMPLE 5. tan 15° = tan (60° - 45°) 1+ tan 60° tan 45°
=‘/§"=z—~/i
73+I

EXAMPLE 6. Show that sin (A + B) . sin (A - B) = sin’ A - sin’ B.
SOLUZION.  L.H.S. =(sin A cos B + cos A sin B) (sin A cos B - cos A sin B)
=sin? A cos? B cos? A sin’ B

=sin? A (1 —sin? B) - (1 - sin* A) sin* B

=sin?A ~sin? B=R.H.S.

EXAMPLE 7. Prove that cos (A + B). cos (A — B) = cos? A - sin? B.

6.5 B: CONVERSION FORMULAE (PRODUCTS INTO SUMS)

Using the formulne for sin (A + B), sin (A B), cos (A + B) and cos (A - B), one easily
deduces the g
Theorem 3. If A and B are two angles,

(a) 2sin A cos B =sin (A + B) + sin (A - B),

(b) 2 cos A sin B =sin (A + B) - sin (A - B),

EXAMPLE 15, Show that
sin A+ 2 sin SA + sin 9A AL
cos A+2cos A+cos 9A
(sin A +sin 9A) + 2 sin SA
(cos A+cos9A) +2cos5A
2sin5A cos4A +2sin 5A
= 2cos5Acos4A +2cosSA
2sinSA.(cos4A +1)
= 2cos5A.(cos4A+1)
=tan SA=RHS.

SOLUTION. LHS.=

6.5 D : RATIOS OF MULTIPLE ANGLES

More formulae ! But the more the formulae, the better is the facility in handling involved
expmssnons If A is an angle and  is a positive integer we say nd is a multiple of A and
(1/n) A is a submultiple of A. Thus 24, 3A,.. are multiples of A and (1/2) A, (173)
A,... are submultiples of A. @

‘Theorem 5. If A is any angle, then

(@sin24=2sinA cos A= A,
1+tan’ A
(b) cos 24 =cos? A —sin? A=2cos? A~ |
I
=l—2sin'A=—_‘l+mnzA;
2tan A
B R

Proof. (a) Put B=A insin (A + B) = sin A cos B + cos A sin B.
‘We get sin (A + A) =sin A cos A +cos A sin A.
That is, sin 2A =2 sin A cos A

i 2sin A
Further, 2sin A cos A = .
cos A

cos? A

e e l _ 2unA
S2ENAGTA 1A
Similarly (b) and (c) are proved by putting B = A in the expressions for cos (A + B) and
tan (A + B).
Replacing A by A/2 in the above formulae we can express ratios of A in terms of
ratios of A/2. Thus
2 tan(A2)

(i) sin A =2 sin (A/2) cos(A/2) = 1+ n’(A2)
(if) cos A = cos¥(A/2) - sin*(A/2) = 2 cosH(A/2) - 1 = | - 2 sin*(Ar2)
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(c) 2 cos A cos B=cos (A + B) +cos (A - B),
(d) 2sin A sin B=cos (A - B) - cos (A + B).
T(;pmvetheuweslanfrmnﬂnRH.S.of h equation and obtain the pondi
LHS.
Note. Formulae (a) and (b) are essentially the same; for, we have only to interchange A and B.
EXAMPLE 8. 2 sin 80° cos 20° = sin (80° + 20°) + sin (80° - 20°)
=sin 100° + (/3 /2) = 5in 80° + (+/3/2)
EXAMPLE 9. 2 sin 10° sin 50° = cos (50° — 10°) - cos (50° + 10°)
=cos 40° - (1/2).
A+ 36) (JA -B
cos

EXAMPLE 10. 2 cos (

2 ):cos(ZA+B)+cos(A—25)

EXAMPLE 11. sin (4 + B) . sin (4 - B) = % [2sin (A + B). sin (A - B)]
1
=5 (cOS;B a(cos 24).

6.5 C:CONVERSION FORMULAE (su’{ns INTO PRODUCTS)
N

We have another set of four more impon.;nx formulae which express sums (and
differences) as products. They are given in the following Theorem.
Theorem 4. If C and D are two angles,
C+D C-D
cos——;
2
(b) sin C = sin D = 2 sin %cos%‘

C+D Cc-D
cos——3
2
(d) cos C—cos D =2sin C;D s'n%s;

Note that the last angle is (D — €)/2 and not (C — D)/2. These are proved by wnung

A=(C+ D)2 and B = (C - D)/2 in Theorem 3.

70°+10°  70°-10°

T €08 ————

2
=2 sin 40° cos 30° = /3 sin 40°.
EXAMPLE 13. cos 20° - sin 20° = cos 20° - cos 70°
20°470° . 70°-20°
s SY ) ——
2 2
=2 sin 45° cos 25° = V2 sin 25°.
70-30  76+30
2

(a) sin C + sin D =2 sin

(c) cos C+cos D =2cos

EXAMPLE 12. sin 70° + sin 10° = 2 sin

=2sin

EXAMPLE 14. sin 70 - sin 36 = 2 sin ———

2
=2 sin 20 cos 56.
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_ 1-tan’(AR)
1+ tan®(42)
i o _2tan(A2) .
(ii)tan A = T+’ (A2) " |

EXAMPLE 14 sin 4 8 = 2 sin (46/2) cos (46/2) = 2 sin 26 cos 26.

EXAMPLY 1™ cos(A + B) =2 cos? @_MM

1+tan’((A+BW2)
2 tan 20°
1-tan’ 20°°
Theorem 6. If A is any angle, then
(a)sin3A=3sinA-4sin’A;
(b) cos 3A =4 cos® A ~3 cos A;

EXAMPLI tan 40° =

3tan A -tan'A
1-3tan’A
Proof. (a) sin 3A =sin (24 + A)
=5in 24 cos A + cos 24 sin A
=2sinA cos’A + (1 - 2sin’A) sin A
=2sinA (1 -sinA) +sin A (1 -2 sin? A)

(c)tan 3A =

=3sinA-4sin’A.
Aliter sin 3A -sinA =2sin -M—;icossL;A

=2sinA cos 24 =2sin A. (1 -2 sin? A)
=2sinA-4sin’ A
Hence sin 34 = 3 sinA -4 sin* A,

The other formulae are similarly proved. Q
EXAMPI | ) sin A =sin 3(A/3) = 3 sin (A/3) - 4 sin® (A/3).
1
EXAMPI | 2. 5 =cos 60° = 4 cos® 20° - 3 cos 20°.
3uanAteC m;(un»c)
EXAMPILE 21 an(A+ B+ O) = :mn’(“"")

EXAMPI 1. 22, Show that
4 sin @ sin (U3 + 8) sin (T/3 — 0) = 5in36.
SOLUTION.  L.H.S. = 4sin 8 [sin? /3 - sin6]
=4 sin 0 (3/4 - 5in6)
=35in 0 -4sin’0
=sin 30 =R.HS.
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6.5 E:RATIOS OF 18° AND 36°:
Let 6=18°, sothat $8=90° and 26 =90° - 36.
’n:is;ivelsinM-eos”;llnlisZsinBcose=4cos’9-3cose
Dividing by cos 6 (+0), we get
2sin@=4cos?0-3=1-4sin?6.
Therefore, 4 sin? 8 + 2 sin 8 - 1 = 0. Solving this for sin 6, we obtain
2 fA¥16 145
sin@= 3 =2
Since = 18°, sin 8 is positive.
Therefore have, '
-1
sin 18° = Jg—‘-

Now the other ratios of 18° can be found out, as also those of 36°, 72° and 54°. For
example, cos 72° = sin 18° = (¥/5 — 1)/4; and so on.

Now we give g 1 proofs of the expressions for sin 18° and cos 36°. Consider
an isosceles triangle ABC in which AB = AC and £A = 36°, sothat ZB=ZC=72°.
Let the internal biector of £ C meet AB in D. Since ZBCD = ZACD = 36°, we have
£BDC =72°. S0 BCD is an isosceles triangle and BC = DC. Again £ DAC = ZDCA
= 36° and so triangle ACD is isosceles in which AD = DC. Draw AE and DF
perpendicular to BC and AC respectively. Let AB=AC =aand BC = DC = DA = x.
Now triangle ABC is similar to triangle CDB. Hence

185

Fig. 6.17

ABICD = BCIDB.
That is, alx = xl(a - x). Simplifying we get x? + ax - a® = (.

Solving wehave  x/a=(-1+ 5)/2,as negative sign is ruled out.
Intrangle ABE, ZBAE=18° . sin ZBAE = BE/AB.
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xR

’ 1
That is, sin 18° = 7%= (da) = (5 - 14,
Also from triangle DAF, cos ZDAF = AFIAD.
a2 1 12 5+l
is, c0s36° = —=—(alx) =0 —=2=
That is, 3 ) 20D 7
V10425
EXAMPLE 23, cos 18° = T4 msn72
. J10-245
EXAMPLE 24, sin 36° = T3 =coss4
EXAMPLE 25. Show that 2 sin 48° sin 12° = sin 18°.
SOLUTION. L.H.S = cos 36° - cos 60°
R 2 N U I N
= 2 A =sin 18°=R.H.S.

EXERCISE 6.3

Show that tan 20° + tan 40° + v/3 tan 20° an 40° = 3 .
Show that tan 3A — tan 24 - tan A = tan 3A tan 24 tan A.
Show that

w e

cotAcotB-1

(@) col(A +B)= LA+ EotE

cotAcotB +1

b) col(A - B)= %
@ ( ) cotB-cot A
N cot* A1

(c) cot24 = —— "0

Expand sin (A + B + C), cos (A + B + C),tan (A + B + C) in terms of the ratios of A, B, C.
(a) Show that

n e

An(A+ Ay + . 4 A =

.., A, taken r at a time. (Use

where 5, = sum of products of tangents of the angles A, A,,
induction).
Prove the following identities [(6) - (12)):
6. €os30 = 4cos0 cos (0 - /3) cos(8 + w/3).
7. tan36 = tand tan(n/3 - 6) tan (W3 + 6).
8. c0s50 = 16¢0s*B — 20c0s’0 + Scosh.
9. (sin88)/sind = § (16c0s’0 ~ 24¢0s%0 + 10050 - cos 6). n

4tan A-4tan’A

16 ndA s~
~6tan’ A+tan' A

11. | +tan A tan (A/2) = tan A cot (A/2) - 1 =sec A.



= in (A + B)=sin A cos B
'+ 2%-11an 2214 in the forma sin ( ) +cos A sin B.

12 (@) cotA-tanA=2cot24.
®) HenmapuesunA+2unu¢z“m22A+..
cot A + b cot 2" A, where a and b are integers.
Frove wie totlowing relsion
13, cos 20° cos 40° cos 60° cos 80° = 1/16.
14, sin 20° sin 40° sin 60° sin 80° = 3/16.
.. cos? 74° + cos? 14° - cos 74° cos 14° = 3/4.

@ an 00 = BB -2

() cot15°=2+43. .
0t 20° - cot 40° + cot 80° = 3.
o o0
tan 6° tan 42° tan 66° tan 78° = 1. (b) Use Table 6.3, Section 6.3 to obtain expressions for sin (A - B), cos (A + B) and
x i3 3n = " cos (A - B).
— ©c0s —C.c0s T ..cos —— =172%. X
R TR TR T 15 In the xy-plane consider the unit circle (centre 0, radius 1) and take two points P = (cos A,
c0s8 + c0s50 + cos 76 = cos 20 + cos 48, where 8 = 12°. sinA) and Q = (cos B, sin B) on the circle as shown in Fig. 6.19. Use the distance formula
sec80-1 tan89 for PQ in two ways to obtain
Sbowmum‘o_ﬁms- cos (A~ B) =cos A cos B +sin A sin B.
" Show that 4 sin® 6 cos 30 + 4 cos* @ sin 36 = 3 sin 46, Bleosdorini
Ifcosa+cosP=pandsina+sinf=g, <
cos B, sin B
evaluate tan? (& — B)/2 and tan? (a — B)/2 in terms of p and ¢. A-B o )
Cosu — ¢ /—\A
Ifcos 6= 7 o« then show that N8
—ecosu ) X
an (@72) =+ f:*—' tan (uf2).
-
If cosec (8 + @) cosec (8 — @) = 2 cosec 8 then show that either « = 2nx, where 7 is an
integer or sin 6 = +v2 cos (2).
For what values of A in [0, 2x] does the following relation hold good? . . .
Give a purely geometrical proof of the formula for tan (A + B), using figure 6.16. (Use
(a) 2sin(A2) = fl+sin A - ‘/l ~sinA; the similarity of triangles PTR and OSR).
g
= ey In figure 6.20, ZXOY=A, ZZOY=Band PQ, PR, RS, PT are respectively perpendicular
bt BT R e 10 OX, OY, OX, RS. Give geometrical proofs of the formulac in Theorem 2, that is, the

Use the idea given in exercise 26 to expressions for the ratios of A - B. (Imitate the proof of Theorem 1).

show that sin9°=————3+ﬁ; 5-\6 . 4

A Ro
Ki
TO

- m,.,=—\/3*ﬁ: -5

Evaluate sin 27° and cos 27°.

Find the ratios of 15° and 75°. 2

(a) In the adjoining figure (Fig. 18), ZXOY = A, LYOZ = B. X
NaY4-B

-

The line PQR is icular to OY and RS is perpendicular to OX . o i
Use the fact that 2A0PR = OPRS - PR.OQ 1o prove that =

P

«o
©o
5
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Infi 6.2I.£XOY=C.£ZOY=D.0Whisecu£Y02,lh=I'inePRQi‘spcrpcndxicuh,
W »O%HMPS,Q'I'.RL“:H i to OX and the line QNM is perpendicular

1o PS. Observe that ZXOW = (C + DVZMAYOW:ZZDW:(C—DVZ. Deduce the
results of Theorem 4.

Y
- (4
7
B
(4

n n

0 s X
Fig. 6.21

3s. Let BC be a diameter of a circle centre O and P a point on the circle such that £ CBP = A
PQ perpendicular to BC as in figure 6.22. Observe that ZCOP =2A and ZCPQ = A

Obtain the expressions for sin 24. cos 24 and tan 24.
P

Fig. 6.22

6.6 TRIGONOMETRICAL IDENTITIES
Using the fact that the sum of the angles of a triangle ABC is 180 degrees, we can
derive several identities, which will be useful later. Generally, in these identities we
express sums into products. If the sums are symmetric functions of A, B, C, so are the
products. The conversion rules (sums into products) derived in Section 6.5 are
extensively used.

First we mention a few simple relations governed by the condition A + B+ C= 180°:

(#) sin (A + B) =sin (180° - C) =sin C.
(ii) cos (B + C) =cos (180° - A) =-cos A.
(iii).tan (C + A) = tan (180° - B) = — tan B.
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(iv) sin (A + B)2) = sin (90° - C12) = cos (C12).
(v) cos ((B + C)/2) = cos (90° - AR2) = sin (Ar2).
(vi) tan ((C + A)/2) = an(90° - B12) = cot (B2).

(vif) sin (A + BY/4) = sin «,,-0,4,““(5_ x+CJ
2 4

=cos((r + C)/4).
EXAMPLE 1.IfA + B + C = 180° show that
cos 2A + cos 2B + cos 2C = - | — 4 cos A cos B cos C.
SOLUTION. We have
€08 24 + 05 2B +cos 2C = 2 cos (A + B) cos (A - B) + cos 2C
=—-2cos Ccos (A-B)+2cos’C-1
=~1-2cos C[cos (A= B) - cos C]
=~1-2cos C[cos (A~ B) +cos (A +B)]
==1-2cosC.2cos A cos B
=-1-4cosAcosBcosC.
EXAMPLE 2.IfA + B + C = 1, show that
sin A + sin B ~ sin C = 4 sin (A/2) sin (B/2) cos (CR2).
SOLUTION. We have
sin A + sin B - sin C = 2 sin(A + B)/2 cos(A — B)/2 - sin C
=2 cos(C12) cos((A - B)/2) - 2 sin(C/2) cos(C/2)
=2 cos(C/2) [cos((A - B)/2) - sin(C/2)]
=2 cos(C72) [cos((A - B)/2) - cos((A + B)/2)]
=2 cos(C/2) 2 sin(A/2) sin(B/2)
=4 sin(A/2) sin(B/2) cos(C/2).
EXAMPLE 3. If the sum of the three angles A, B, C is 2 right angles, show that
$in’(A2) + sin’(B2) + sin*(C/2) = I - 2 sin(A/2) sin(B/2) sin(C/2).
SOLUTION. We have 5
sin*(A/2) + sin®(B/2) + sin¥(C/2)
= 1 —.(cos*(Ar2) - sin¥(B/2)) + sin¥(C/2)
= 1 - cos((A + B)/2) cos((A - B)/2) + sin*(C/2)
= 1 - sin(C12) cos((A - BY2) + sin*(C/2)
=1 = sin(C/2) [cos((A - B)/2) - sin(C/2)}
= 1 - sin(C/2) [cos((A - B)/2) - cos((A + B)/2)]
=1 —sin(C/2) 2 sin(A/2) sin(B/2)
=1 - 2 sin(A/2) sin(B/2) sin(C/2).
Alternatively, one may use the formula
5in’6/2 = (1/2)(1 - cos 8)
and write the left hand expression in the form
3/2 - 1/2 (cos A + cos B + cos C),
and proceed with cos A + cos B + cos C as in Example 2.
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EXAMPLE 4. IfA + B + C is a multiple of m, then prove that
lanA+mnB+tanC=tanAmnBtanC.
SOLUTION. Let A + B + C = n, where n is any integer. Then
A+B=m-C.
Therefore tan (A + B) = tan (n%t - C).
tan A +tan B
1-tan Atan B
tan A +tan B=—tan C +tan A tan B tan C.
That is, tan A + tan B + tan C = tan A tan B tan C. As a consequence, we see that if
A+B+C =x.|henunM+umnB+(annC=lannA.tannBJannC.fora.nyin(egern.

EXERCISE 6.6

If A + B + C = 180°, show that

1. sin2A +sin 2B +sin 2C =4 sinAsin Bsin C.

2. in 24 - sin 28 + sin 2C = 4 cos A sin B cos C.

3. c0s 24 + cos 2B~ cos 2C = 1 - 4 sin A sin B cos C, and hence that
£0s 2A - cos 2B — cos 2C =~ 1 + 4 cos A sin Bsin C.

4. sin A + sin B+ sin C = 4 cos (A/2) cos (B2) cos (C/2).

5. cos A +cos B +cos C = | +4 sin (A/2) sin (B/2) sin (C/2).

6. —cos A +cos B +cos C =~ 1 +4sin (A/2) cos (B/2) cos (C/2).

7. sin¥(Ar2) - sin%(B/2) + sin¥(C/2) = | - 2 cos (A/2) sin (B/2) cos (C/2).

8.

9

0.

=-tanC.

So

. cos¥(Af2) + cos¥(B/2) + cos*(C/2) = 2 + 2 sin (A/2) sin (B/2) sin (C12).
. COs(A/2) + cos?(BI2) -- cos(C/2) = 2 + 2 cos (A/2) cos (B/2) sin (C12).
. cos?A + cos?B — cos*C = 1 — 2 sin A sin B cos C.
11. sinA + sin?B + sin®C =2 + 2 cos A cos B cos C.
12. cot (A/2) + cot (Bf2) + cot (C/2) = cot (A/2) cot (B/2) cot (C/2).
13. tn(B/2) tan (C72) + tan (C/2) tan (A/2) + tan (A/2) tan (B/2) = 1.
14. cot Beot C+cot CcotA+cotAcotB=1.
15. sin (A/2) + sin (B/2) + sin (C/2)
=1 +4sin (x—A)4) sin ((x - B)/4) sin ((x - C)/4)
=1 +4 cos (= + A)/4) cos ((n + B)/4) cos ((r + C)/4).
16. cos (A/2) - cos (B/2) + cos (C/2)
=4 cos (1t + A)/4) cos ((r - B)/4) cos ((x + C)/4).
x+B =w-C

17. sin (A/2) + sin (B/2) - sin (C/2) =~ | + 4 sin Xta

sin 1 sin 3
18. cos (A72) + cos (BI2) + cos (C/2) = 4 cos ";A cos "; B ";C
sin 2A + sin 2B + sin 2C .
19. ———————————— =85in(A/2) sin (B/2) sin (C/2).

sin A+sinB+sinC
If A + B + C=2W, show that
20. sin (W—A) + sin (W - B) + sin (W~ C) - sin W
=4 sin (A/2) sin (B/2) sin (C/2).
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. 21. cos?W + cos’(W~A) + cos’(W - B) + cos((W~ C)

=2+2cosAcosBcos C.
1fA + B + C=0, then show that

22. sin A +sin B + sin C = - 4sin (A/2) sin (B/2) sin (C/2).
23. cos?A +cos’B - cos?C = 1 +2sin A sin B cos C.
24. sin 24 + sin 2B +sin 2C

= 2(sin A + sin B + sin C) x (1 + cos A + cos B + cos C).
25. If p and q are respectively the product of sines and cosines of the angles of a triangle then
the tangets of the angles are the roots of

g -pX+(l+q)x-p=0.

IfA + B+ C = 180°, then
cos mA + cos mB + cos mC = | £ sin (mA/2) sin (mB/2) sin (mC/2), according as m is of
the form 4n + for4n + 3 ; and
sin mA + sin mB + sin mC = + 4 sin mA sin mB sin mC, according as m is of the form 4n
or 4n + 2. Here the sign + in the two results can be replaced by (1™~ 2 and (~1y*2
respectively.

26.

s

6.7 INVERSE CIRCULAR FUNCTIONS

In section 6.4, Example 8 it was observed that the functionf: R = R defined by flx) =
sinx was neither one-one nor onto. If we wish to define inverse of the sine function we
must cut to size the domain as well as the co-domain (see Remark 2, Section 6.4).
Since the range of the sine function is [~1, 1] and it takes all these values once and only
once in the interval [-7/2, /2], we have the following definition.
Definition. If f: [~ /2, ©/2] = [~ 1, 1] is defined by f(x) = sin x for all xin the domain
of f, then f being a bijective function has an inverse f~! which is called the inverse sine
function. We write sin™! x (or arc sin x) for f~'(x).

In other words, if =1 < x < 1. then the numerically smallest angle 8 whose sine is x
is defined as sin'x.
(if) sin™' 1 = 0/2;
(iv) sin™! (=1) =-1/2;

EXAMPLE 1. (i) sin"'(1/42 ) = 45%
(iii) sin™' 0=0;
(v) sin”! (-1/2) = -16.
Remark 1.If0 < x < 1 and sin™ x =, then sin™' (-x) =-6.

Similarly we proceed to define cos™' x, tan™' x etc. For the inverse of the cosine
function, we observe that the range of the cosine function is again [-1, 1] and it takes
all these values exactly once in [0, 7t].

Definition. If £ [0, t] = [~1. 1] is defined by fix) = cos x, for all x in [0, ], then fis a
bijective function and its inverse f ' is called the inverse cosine function. We write os™
! x (or arc cos x) for f ! (x).

That is, if -1 € x € 1, the smallest non-negative angle 8 whose cosine is x is defined
ascos™' x.

EXAMPLE 2.(i) cos™(1/2) = /3;
(iii) cos™ 0 = W2;
(v) cos™ (-1/2) = 2n/3.

(ii) cos™ 1=0;
(i) cos™ (<) =m;
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Remark 2.1f 0 <x < | and cos™ x = 6, then cos™ (-x)=m-06.

For the inverse tangent function, we see that the range of the tangent function is the
whole real line R and it takes every real value just once in (12, 7/2).
Definition. If f: (- &/2, %/2) —» R is defined by fix) = tan x for all xin (-ilr{Z. 1/2), then
fis a bijective function and so has an inverse. The inverse function f ™' is called the
inverse tangent function. Also f~' (x) is denoted by tan™! x (or arc tan x).

In other words, if x is a real number, then the numerically smallest angle 0 whose
tangent is x is written tan™' x.
EXAMPLE 3.() tan' V3 =%/3;

(i) tan! (<1/+/3 ) =-76.
Remark 3.1f x> 0 and tan™! x = 6, then tan™! (-x) =- 6.
Definition. The function f : (0, &) — R defined by fix) = cot x for all xin (0, ) is a
bijective function and its inverse f ! is called the inverse cotangent function. We write
cot™! x (or arc cot x) for f = (x).

EXAMPLE 4.(i) cot™! | = w/4; (ii) cot™ (=1) =3 W4;

(iid) cot™! 0= 1/2; (iv) cot! (V3 -2)=Tm12.
Definition. The function [0, /2) U (2, &] — R\(-1, ) given by fix) = sec x for all x
in the domain of fis a bijective function and its inverse /' is called the inverse secant
funttion. We write see™! x (arc sec x) for f! (x).
EXAMPLE 5.(i) sec™' 1 = 0;

i) sec™! (- 23 ) =5m6;  (iv) sec”! (1) =7
Definition. The function f: [- #/2, 0) U (0, /2] — R\(~1, 1) given by f(x) = cosec x for
all x in the domain of fbeing a bijection has an inverse ' which is called the inverse
cosecant function. We write cosec™ x (or arc cosec x) for f ! (x).

EXAMPLE 6. (i) cosec™! 1 = m/2; (ii) cosec™' 2 = /6;

(iii) cosec™ (1) = - W2; (iv) cosec™! (- 2/3 ) = - 3.

The six functions defined above are called the inverse circular functions or inverse

(i) tan”' 0=0

(i) sec™! 2=1/3;

trigonometrical ratios.
We list some simple properties of these inverse functions.
A. (a)sin(sin"' x)=xforxe [~1,1],and if -2 SO < /2

then sin”! (sin 6) = 6.
(b)cos(cos' x)=xforxe [-1,1],and if 0SB <,
then cos™ (cos 8) = 0.
(c) tan (tan™' x) = x for any real x, and if - /2 < 0 < /2,
then tan™' (tan 6) = 6.
B. (@ If-1sx<1, thensin™ x+cos™! x=n/2;
(b) If x is any real number, then tan™! x + cot™! x = n/2;
(c)Ifx21o0rx<-1,thensec! x + cosec™! x = /2.
C. (@) Ifx21o0rxs- 1, then cosec™ x =sin™! (1/x);
(b)Ifx21orxs-1, then sec™! x = cos™ (1/x);
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(¢) If x>0, then cot™! x = tan! (1/x) and
if x <0, then cot™! x = — tan"! (1/x).
D. (a)If-1<x<1, thensin™ x + sin~! -x)=0;
(b)If-1<x< 1, then cos™ x + cos™ (-x) =m;
(c) If x is any réal number, then tan~' x + tan"! (- x)=0.

‘The graphs of the inverse circular functions sin! x, cos™ x, tan™! x, cot™" x, sec! x
and cosec™" x are given in Figures 6.23 to 6.28 respectively. The student is advised to
note the nuances of these graphs carefully.

EXAMPLE 7. Show that

sin™! (3/5) + sin™! (8/17) = sin~! (77/85).
SOLUTION. Assume that sin”' (3/5) = a, sin~! (8/17) = B and sin”! (77/85) =7, so
that sin &t = 3/5, sin B = 8/17 and sin y = 77/85. Then we have to show that a + B =Y.

Now sin (& + B)

=sin o cos B + cos a sin B
=(3/5) (15/17) + (4/5) (8/17)
=77/85=siny.
Hence & + B = v, which proves the result, since we have o + B<mn2.

y

E5 [

Fig. 6.24

Fig. 6.26

Fig. 6.25
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Fig. 627 Fig. 6.28

EXAMPLE 8. Prove that
4 tan! (1/5) - 1an™ (1/239) = /4.

SOLUTION. Let tan~! (1/5) = a.and tan™' (1/239) =B,
so that tan o= 1/5 and tan B = 1/239.
‘We need to show that

da-B=mAorda=m/4+B.

17 |8
5 = |
e .
(@) (b)
fFing o 29
Now unza=l—fx—,"a=lf((g, =5/12.
Therefore, mm=ﬂ—w—=lwm.

1—an’ 20 1-(512)°

x I+anf _1+(1239) 120
AL, “"(Z*“)= T—anB 1-(1239) 119"
Hence tan 4a = tan ((/4) + B), giving 40 = (/4) + B ds desired.
Ifab < 1, show that 4
tan! a + tar! b = tan! 2¥0
1 ~ab
y ath _

Let tan™! tan™' b =B, tan =y
a5 =B T=ab Y
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xsinQ@ _j X—COsQL
3. un' ————-tan =(r2)-a
1-xcosa sina ™2

2+l N
14.  sin(coc!(costtan™'x) = 75 -

x
16. If cos™! (x/a) + cos™ (y/b) = a show that

(¥a?) -2 (xylab) cos & + (P/b?) = sin® o
17. Iftan~ x4 tan”'y + tan”! z=x, show that x + y +2=XyZ.
18. Iftan x+tan” y + tan! z = m/2, show that xy + yz + 2z = 1.
19. Ifcos™ x+cos! y+cos z=x show thatx? + Y + 22 + 20z = 1.
20. ifsin”! x+sin™' y + sin”' z= &, show that

a2 =22 4 222 + 2P - -y -

2x-k
21, 1romunt 23 =tan! 1
10 = tan 2’(_xnndo tan 5

then show that one of the values of 8 - ¢ is /6.
Solve the following equations for x [(22) - (25)].
Ll ] zel =4,
x~2 x+2
23. cot!x-cot! (x+2)=15°
24. sin x+sin” 2x=w3.
25. sin' x+sin”! (1-x)=cos” x.

2. gt

6.8 TRIGONOMETRICAL EQUATIONS

A trigonometrical equation is one which involves one or more circular functions of the
unknown angle. In general, the number of solutions is infinite, as the circular functions
are periodic. We give below samples of equations which we generally encounter.

2. cos’@-sinB=-1.

1
l.sin@=—.
sin 8 2

3. /3 cosx-sinx=1. 4. sin Sx +sin 3x=2 cos x.

5. tanx+tan2x=4/3. 6. secx+cosecx=242.

It is possible that an equation has no solution? For instance the equation sin x = 2.5
cannot be solved for x, because the value of sin x always lies in the interval [-1. 1].

Sometimes we need to know the ions of equations in a p range such as
[0, 2x], (- ®/2, x/2).
EXAMPLE 1. Let us consider the equation sin x = (1/2). We would like to solve this
equation for x. One obvious value of x that strikes our mind is x = /6 (= 30°). Now we
can add (or subtract) an integral multiple of 360° (= 2x) and get more solutions. Thus
we have S 5
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Then we have to prove that o + § = y.
tana+tanf _a+b
I-tanocanp 1-ab
Hence @+ B =7, which is what is wanted.
Question 1. Where have we used the fact that ab < 17
2. V;’:()ha’pgens ifab> 1, that is, how should we change the given relation
D) 4
EXAMPLE 10. Solve the equation tan™ (x + 1) + tan!(x - 1) = tan™! (8/31).
SOLUTION. Lettan™ (x+ 1) =@, tan™! (x~ 1) = B so that tan =x+ 1, tan B =x~1.
The given relation becomes
a+ B =tan"! (8/31).
anc+tnf 8
l-tanatanf 31
(x+D+(x-1) _8
1-(x+Dx-1) 31°
Simplifying, we obtain 4x* +31x-8=0.
Solving this quadratic equation, we have x = -8, 1/4.
Here x = -8 is inadmissible, because for this value of x, L.H.S. of the given equation
is a negative angle, whereas, its RH.S. is a positive angle. Thus we have only one

* solution, namely, x = 1/4.
EXERCISE 6.7

(131

Now tan(a + )= =tany.

This in turn gives

e

cos ! (4/5) + cos™' (12/13) = cos”' (33/65).

™

2 cos™! (3/J13 ) + cot! (16/63) + % cos! (1RS) =x.

tan™' (1/2) + tan™! (173) = w4,

tan"' (m/n) + tan"' ((n ~ m)/(n + m)) = /4 or -3 W4, according asm/n >~ 1 orm/n < - 1.
tan! (5/12) + sin™! (7/25) = cos™! (253/325).

3tan ' (1/4) +1an”! (1720) + tan™ (1/1985) = w/4.

” &

7 tan” (1/3) + tan”' (1/5) + tan”! (177) + tan”! (1/8) = w4,

8 2tan”! (1/5) +tan”! (1/7) + 2 tan™" (1/8) = /4.
L oo O

9 T+ab T Tibe T+ca

Jo¢os 2an” (1/7)) =sin (4 tan”! (173)).
o ala+b+c) i ba+b+o) cda+b+c) i

11

ca ab
[ 2 2 !z_bz
i P +a —x+b#m_, xya b o ab —
;}az_bz by +a® +b°
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30°v36°°+30°.2(360°)+30".3(360°)¢30"..‘.

-360° +30°, (-2) (360°) + 30°, (-3) (360°) + 30°, ..
.smhm'ons,Alllhcsccznbepulind:efa-mn360°¢30°=2nu+xl6.wﬁaenilm
8 other sols

Are there any solutions of sin x = 1/2? We notice i iti
pumber, and the sine function is positive not only in the fuum ;u’::;vlenmt;e‘
second quadrant in which the sine function decreases continuously from 1 to 0. The
solution in the first quadrant, namely, x = 30° is already taken care of. Since sin
(180° - 8) = sin 6, we have 180° - 30° = 150° as another solution of sin x = 172, Again
we generate other solutions by adding integer multiples of 360° to this solution. Thus
we obtain 150°, 360° + 150°, 2(360°) + 150°, 3(360°) + 50°, ..., ~360° + 150°, =2)
(360°) + l§p". (=3)(360°) + 150°.... as further solutions. These can be abbreviated by
the expression

n.360° + l50°=2nx+5ﬂ6.whaenisanimcger.

Observe that sine attains the value of 1/2 only once in the first quadrant (at 30°) and
only once in the second quadrant (at 150°). Hence the two sets of solutions that have
been obtained above contain all the solutions of sin x = 1/2 between them. Thus the
solution set S is given by

S=(2m+n6lne Z) U {2+ 506line Z).
We can amalgamate, these two sets into one single set as follows:
Observe that 2R+ 506 =2nr+ R -W6=(2n+ 1)K - 06.
Therefore
S={2m+w6lne Z) U ((2n+ )x-xl6Ine Z)
={nmx+(-1yn6lne Z),
because nm + (—1)" 1/6 takes the form 2k + 7/6, when n is even (and n = 2k) and the
form (2k + 1) 7 — p/6 when n is odd (and n = 2k + 1). Also observe that /6 is a solution
of the equation with the least itude. To we have that the general
solution of the equation sin x = 1/2 is given by x = nx + (-1)" 7/6, where n is any
integer. Note that 7/6 is a solution which was picked was picked up in the first instance
an we manufactured the general solution using this single solution. Similarly one can
take the equation sin x = — 1/2 and begin with the root x = - 30° = - /6 and obtain the
general solution in the form
x=nn+(-1y (-né),n€ Z.

Thus we have the following result. "

Theorem 7. Let x = & be one solution of the equation sin x = k, where -1 <k < 1. Then
the general solution is given by x=nx + (-1 a,n€ Z.

Proof. 1.2

L6

We have sinx=k=sina;ie,sinx-sina=0.
Hence, 2sin Ll oS Al =0, which gives

x-o x+a
sin =0orcos =0.
2 2
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I the st case. -2 el
Thatis, r=dx+anel
In the second case. ';' =@+ WlaeZ
Tha is. x=(b+lh-a.le1.
(ﬁkl‘“*-‘t

x=ax+(-1rancZ 2
l—th-zﬁnﬁi_imdikmhsnbcfmmdﬁuu

ﬁ-&w“iﬂwﬁ-dﬁ&
—ﬁlh-‘-&ﬂnmdkm&m,uommsx:o
Hi-uﬁ:sﬁh(mpdhll.mﬁh
ﬂmlhh-b&l-wdhfmmu:h—ls
ke, Sor imstance. k= 1/+/2 . which gives cos x= /2.

The number I/+/2 is positive and th sme function is positive in the first quadrant
M&m#M(ﬂylaﬁiﬂlikfuﬂmbx:ﬁ‘:ﬂAm
hﬁ-n-ﬁ”iﬂh+ﬂ4lueZ|.‘I'htlon|y|sohmonmzhc
ﬁ-‘—inix:—ﬁ‘:—m.mmhmm:omnsoluumu
l_-ﬂl.eZ].Ikme.epﬂﬂsohi‘isgimb}x:lﬂl:ﬂ-l.neZ
wwc-htlmﬂrcnu=—v\5.Ingtn:nLu:ha\trh:fol.b-mg
theorem.

k<l Letus

Thearem 8.1 - 1 S k< | and a is oae solution of cos x = k. then the general solution
is givea by x = 2nx = @, n being any mteger.
Proef. Webhave cosx=k=cosa; ie. cosx-cosa=0.

Heace R

. X+a x+a
¥ -—2'—=Qwhw S =nx.ncl
giving r=2mx-a.neZ

L x-a’ x-a
H -——2—=0.-ehve 5 =nx.ael
giving x=2m+aneZ
Thus the geacral soluton is givea by

x=2mtaneZ
2 - (a)Thesolutionof cosx=1isx=2mx=0=2nx.ne Z
(b)'l\:_ioﬁﬂdcﬁx:Oiu:bu:xrz.ne ZThatisx=(4nz1)"2.ne
Z. Since numbers of the form 4n + 1. n € Z and those of the form 4n - 1. n e
;mmﬂwmwmmeMmmﬂ\
imtheformz=(n+ ) 22neZ '
{c) The solution of cos x=—-l isgiveabyx=2m+x. ne Z Thatisx=(2n % 1)
%, m € Z Now pambers of the form 21 + 1. n € Z are the same as those of the
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fom2n-1l.ne€ Z because both are collections of all odd integers. Hence
avoidingduplidly.weanwhelhesohﬁmh&esinﬂufamxsm+l)

xneZ
Mwmmm&mmﬁw(a)mmmlum
even multiple of x: (b) vanishes at an odd multiple of %/2: and (c) takes the

value -1 at an odd multiple of x.

EXAMPLE 3. Now consider an equation of the form tan x = k. Let us take k=2 - 3.
ugekisaposiﬁvemmbamdm:mgunﬁmcdmiskwwnwbeposiﬁveimheﬁm
and third quadrants. The solutions are x = 15° = %/12 and x = 180° + 15°=x+ w12
,upgaivelyimhesequsdnm&Mgiveﬁsemmesohﬁmsas[m+x|2|ne zZ)
and (2n% + X + %12 In € Z). Their union is {2nx + /121 n € Z} Ul@n+ )r+w/
121 m € Z) which can be compactly written in the form (nx+mI12ine Z}. Wecan
<imilarly deal with equations such as tan x =~ (2 - J3).
m?.mlbemywdnnmbandabeapuﬁculunmﬁmomeequﬁonm
£ = k. Then the general solution is x = nx + &, where n € Z.
mer.Wehncunx=k=nna.Somx-ma:O.Simplifyins.wnvesin(x—a)
—0.andhencex-a=nx.ne Zgivingx=nx+ane Z ]
Remark 4. Equaﬁonofmcformcou=ksecx=hoosocx=kanberespecﬁvely
(and equivalently) transformed into the forms tan x = 1/k (k #0), cos x — 1/k, sin x =
Vk. which can be solved as above.
ENAMPLE 1. Solve: cos” 8- sin 0=
SOLL TION. We use the relation cos®

aquad quation in sin 8. Accordingl

1 —sin? 8 and rewrite the given equation as
we have

sin"@+sin8-2=0.
Factonising. we get
(sinB-1)(sin®+2)=0.
Thus sin 8 = 1 or - 2: sin 8 = — 2 has no solutions. If sin@=1, wehave 6 =n =
(-1 ®/2.ne Z, whichisthe same as 0= (4n+ 1) "2.n€ Z.
ENA ' = Solve: sin 5x + sin 3x = 2 cos x.
SO1 1 11t - The given equation can be written as
2 sin 4x cos x =2 COS X.
That is. 2 cos x (sin 4x — 1) = 0. So. either cos x =0 or sin4x= 1.
The equation cosx=0givesx=(2n+1)"2,ne Z.
The equation  sin4x =1 gives4x=(dn+ h W2 ne z

That is, x=(4n+l)%.nel

Hence the solution set is
(@n+ HrBIne Z} U {Q2n+ Nr2lne Z}.
Suppose we are asked to solve the equation in Example 5 in [0, 2]. Then
c0s x = 0 has two solutions, x = /2 and x = 37/2, while sin 4x = 1 has four solutions,
x =8, x = S8, x = 9r/8, x = 1378, In all. we have six solutions.
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EXAMPLE 6. Solve the equation
acosx+bsinx=c. )
What is the condition to be satisfied by a, b, ¢ for the existence of a solution? Hence

solve 3 cosx-sinx=1.

We know that for any ordered pair (a, b) of real numebrs (not simultaneously zero),

there exists a ding pair of real bers r and 8 such that r > 0;
a=rcos6and b=rsin 6.

To see this, plot the point P = (a, b) in the xy — plane (P may lie in any quadrant or an

any axis). Join OP. Let OP = r and ZxOP = 6, where 0 is measured in the positive

i of sin © and cos 6, we have cos 8 =a/rand sin 6 =

direction. From the very
bir, where a=rcos 8 and b = r sin 6.
Here r=+Ja*+b* and 0 =tan"' (b/a) or m + tan"! (bla).

The angle 8 should satisfy 7 cos 8 = a and r sin 6 = b and so lies in the same
quadrant as P = (a, b).

The given equation then becomes 7 cos 6 cos x + rsin 8 sinx = ¢,

Hence rcos(x—0)=c;ie.,cos(x-8)=clr.

For this equation to have a solution, we must have

-1<crs<l,
which is the same as
—Jaz +b? Sc<y a* +b*
If cos o = ¢/r, then the general solution is given by
x-0=2nmto,ne Z
giving
x=2nmm+0za,ne Z

Thus a criterion for the solvability of the equation is

lel < ,)az +5.

In simple cases, it is advisable to divide the given equation directly by ‘jaz +b* and

a b . . )
T . s as cos B and sin 6 for some suitable angle 6. We
apply this method to the given numerical problem. Dividing the equation by

J&B + (1) =2, we obtain (v372) cos x - (112) sin x = 172.

Observing that v/3/2 = cos /6 and 1/2 = sin /6, we get cos U6 cos x - sin /6 sin
x=1/2. That is, cos (x + 1/6) = 1/2 = cos 1/3, which gives x + /6 = 2nx + m3.ne Z
Hence the solution is x=2n -~ W/6 + /3, n € Z.

EXAMPLE 7. Solve the equation
sin (x + /4) = sin 2x.
SOLUTION. At the first glance, we may be tempted to use the formula for sin C -

sin D which anyway gives the correct solution. But we may also argue in the following
manner:

recognise

Toonouermy. 298

The value 2x may be considered as a particular solution of x + 7/4 and hence the
general solution is given by
x+md=nn+(-1"2x,ne Z,
since the sine relation is involved.
Solving this for x, we get
il B
T -2
Compare this with the solution obtained by the first method, namely,

n »
x=:+hmne2mw.nel

neZ

In fact these two solution sets are the same !

EXAMPLE 8. Solve: sec x + cosec x =22 .
SOLUTION. The given equation is the same as

sinx +cos x =22 sin xcos x.

Dividing by v2 and using the fact that sin 14 = 1/4/2 = cos 74, we get
sin (x + 1/4) = sin 2x,
which is the same as the equation in Example 7.

XERCISE 6.8

Solve the equations (1) -~ (12) for 8.

. 2¢0s20-7cos8=0.
sin30+5sin@=0.

. sin (m +n) B + sin (m - n) 8 = sin mO.
tan 50 + cot 26 = 0.
an®+n20+an30=0.

cos 30 = cos’ 6.

(V2 ~1)cosB+sinB=1
2cosB+3sinB=3.

S I

V3 sin 8 + cos 8 = cos (5) sec 6.

10. tan @ + tan (0 + ®/3) + tan (8 - /3) = 3.

11, cot 8 + cot 26 + cot 30 = 0.

12. sin © + s1n 20 +sin 36 = 0.

13. Explain how to solve a cos? 6 + 2b cos 0 sin 8 + ¢ sin® 8 = d. What is the condition
governing a, b, c, d for the existence of a solution?

14. Solve the equation a cos 8 + b sin 8 = ¢, by transforming this into a quadratic equation in

tan 62 chcesolvc(v/Z_ ~1)cosB+sinB=1.

Solve the equation cos 8 + sin 28 = 0 by the following two methods:

(@) Write the equation as cos 8 (1 + 2sin 8) =0 and solve cos 8 =0,2sin 8+ 1=0
separately.

&



240 Graisios oo T oF Pre-CouLzoe Meneunncs |

as sin 20 = sin (8 - 7/2) and solve as in. Example 7. Compare the

(b) Write the equation B (o thy s 1 it

two solution sets obtained in (@
ion for 6:
* ::;;‘::m 9) sin (B - 0) sin (C-0), A B, C being the lnglc.s of a triangle.
17. Find the fallacy in the following argument: Let us solve the equation
2.cos? 0= sin 0 +sin 30 - 5 cos 6.
This is the same as
2 cos? 0 = 2 sin 20 cos 8 — 5 cosB.
Hence, 2cos =25in20-5.
Thatis, 2sin20-2cos@=5.
Nwuﬁnzo—lcnsush2=4mdsomegivu\equaxim}usnosolulion. But8=m2is
a solution of :hegivenequninn.asaneasilybcchecked.
18. Prove the following relations:
(@) (2m+alneZ) U@+ r-alneZ)
=({nr+(-1yalneZ).
) (2n+1lneZ}=Q2n-11neZ).
() 4n+llneZ)uldn-1ine Z)={2n+1line Z}).

- 2n+)R-W4| neZ
@) =B e =(ﬂ4—2mtln€llu{——’(" = }
1-(=1"2
(see Example 7).
19. Find the mini and i values of the i pressions in 6:
(a) cos 0 +sin 6. (b) /3 cos 8- sin 6.
(c) 3sin@+4cosB+2. (d) acos?0+bsincos 8 +csin 6.

(e) cos O (sinB+ ,/nn’eﬂin @),

20. Solve the system for x and y:

tanx+tany=(4/3)y3; tan2v+tan2y=0.
21. Draw the graphs of the following equations:

(a) y=cosx+sinx (b) y=3cosx-sinx+ 1.
22, If sin (x cos B) = cos (% sin 8), then show that
0=(1/4)[(2n+ 1) mxcos” (118)].ne Z

6.9 PROPERTIES OF TRIANGLES

The triangle is one of the simplest geometrical figures and has many interesting
properties. Associated with a triangle are some special points, circles and distances
(lengths). We study the properties of these points and circles in this section. If ABC'is
atriangle, the six quantities namely the three angles A, B, C and the three sides BC =a,
CA = b, AB = c are called the elements of the triangle.

Also the semiperimeter axhie

of triangle ABC is denoted by s.

A. The circumcentre and the sine and cosine rules.
Theorem 10.(The Sine Rule) : In any triangle ABC,
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B e D G

sinA  sinB sinC
Proof.
Case 1. Suppose A is an acute angle in the acute-angled triangle ABC. Then the
circumcentre S is in the interior of the triangle. Join BS and produce it to meet the
circumcircle in D. Join DC. Then as A and D are on the same side of BC, we have
£BDC=£BAC=A. But from the right triangle BDC in which £ BCD = 90°, we have
sin £BDC = BC/BD.

& . a a
That is, sinA=—. S =2R.
& O =R

Fig. 6.30

Case I1. Suppose A is an obtuse angle. Then the circumcentre S is outsidé the triangle

A
= B C
: ) \ $ A
R 4 \_/
Fig. 6.31 Fig. 6.32

ABC and in fact A and S lie on the opposite sides of BC (Fig. 6.31, 6.32). Produce BS
to meet the circumcircle in D and join CD. Then as A and D are on the opposite sides
of BC, we have £ BDC = 180° — £ BAC = 180° - A. Also from triangle BDC which is
right-angled at C, we get sin £ BDC = BC/BD.

a

That is, in(180° -A) = —.

at is sin(180° - A) 2R
But  sin(180°-A)=sinA. H inA= - and —— =28
sin( ~A)=sinA. Hence sinA = 7 and == =2R.

Case 111, Let A be a right angle. Then S is the midpoint of the hypotenuse BC
(Fig. 6.33, 6.34), which is a diameter of the circumcircle. so @ = BC = 2R and
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« X Z.m
* saA sa% 1

bn“pﬂd—dﬂA)sﬂnﬂmemm

b ogamd - =2R
sn B sinC
m-ﬁ&&(«h&:h"l

&6

l—kLﬁnh-‘ﬁmmdamdlhnnmmewmfmC&l.ﬂn@
A s an acute angle. the triangle itself need not be acute-angled. The acute angle A may
E-nn’«-‘hdw«obmx-gbdmkmmommybcdah
-‘dﬂy-ﬂ&wﬁdmwdlhenhdnydm:ummk
From the above theorem, we have a=2R sin A, b=2R sin B.c = 2R sin C.
EXAMPLE 1. Show thata = b cos C + c cos B.

SOLUTION. We bave b cos C + ¢ cos B = 2R sin B cos C + 2R sin C cos B = 2R (sin
BoosC+cosBsinC)=2Rsin(B+()=2Rsin(x~A)=2RsinA=a

Remark 2. Similarly it follows that b=ccos A +acos C, C=acos B+ bcos A. One
can prove this relation geometrically using projections [see problem 13, Exercise 6.9].
EXAMPLE 2. Solve the triangle ABC, given a = 6. B = 45°, A = 75°. Find the
circumradius of the triangle.

Remark 3. Solving a triangle means 1o find the three remaining elements, given three
independent clements of the triangie.
SOLUTION. We have C= 180° - (A + B) = 60°.

From the Sinc Rule, b= —— sin B

sin A
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2sin A iff,—') B+
Theorem 11. (The Cosine Rule) In any triangle ABC,
@ =b 4+ -2bccos A,
Y= +a?-2acos B,
=a+b*-2abcos C.

Proof.
Case L Let A be an acute angle in acute-angled triangle ABC. Draw CD perpendicular
10 AB. The point D falls within the interior of side AB (Fig. 6.35). We have

c
Fig.6.35 Fig. 6.36
BC? = CD* + DB? (from the right triangle BDC)

= CD? + (AB - AD)? = CD? + AB? + AD? - 2AB-AD
=(AD? + CD?) + AB? - 2AB-AD

=AC?+ AB?-2ABAD, (from the right triangle ACD).
Now from triangle ACD, cos ZCAD = AD/DC.
That is, AD=ACcosA.
So BC? = AC? + AB? - 2AB-AC cos A.
That is, @ =b+c-2bccosA.

Case I1. Let A be an obtuse angle. Draw CD perpendicular to BA extended. The point
D falls outside the line segment AB (Fig. 6.36).

We have BC? = CD* + DB? (from the right triangle BCD)
=CD? + (DA + AB)?
= CD? + DA* + AB* + 2DA-AB

=AC? + AB? + 2DA-AB
From triangle ACD, cos ZDAC = ADIAC.

(from the right triangle ACD)

So AD = AC cos (180° — A) =~ AC cos A. ¢
Hence BC? = AC? + AB* - 2AB-AC cos A.
That is, @ =b +c2-2bccos A.

Case [11. Let A be a night angle (Fig. 6.37). Straightaway
b 4+ 2 - 2bc cos A = b + ¢ - 2be cos 90°
=1>2+¢3=4. 4
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Thus in all cases,
@ =b?+c2-2bccos A

Similarly the other two relations can be proved.

This is the Cosine Rule (or the Cosine Law). Q
Remark 4. As before the proof in case / is incomplete. The acute angle A may also lie
in a right triangle or an obtuse triangle ABC. The cosine rule may be proved in these
two cases also similarly.

From the cosine rule, one has

353 a2 I |
cosA = b—t;bc—.cosB= —+—;m—b'

- B
a’+b" -c
cosC= ¥

EXAMPLE 3. [f C = 60°, show that
1 1 3

a+c b+c a+btc

* Prove the converse also.
SOLUTION. The given relation holds good
iff(@a+b+2c)(@+b+c)=3a+c)(b+0),

tie; iffa? + b —ab=c?,

ie, iff @ + b% — ab = a* + b* - 2ab cos C,

e iff cos C =172,

ie., iff C = 60°.

Note. The Exercises under this Section 6.9 A would form part of Exercise 6.9 B to come after
the next Section.

B. Ratios of A/2 and the area of a triangle:
From the identity cos A = 1 - 2 sin? (A/2), we have
“sin? (A/2) =1 -cos A

e b +c?-a’ _217(471—(‘:1’(1Z

2bc 2bc
_a-(b-0 _(atb-c)a-b+o)
T o .

Since 2s=a+b+c,wehavea+b-c=a+b+c-2c=25-2c=2s~c)
and a-b+c=2(s-b), similarly.
. 4s-b)(s-c)

S 25in%(AR2) = ————

o sin¥(A/2) e Y

Therefore sin’(A/2)=(:—_’%‘_(’_—c),

‘Taking square roots on both sides and observing that sin (A/2) is al! Caus
<A <90%, we get g in (A/2) is always positive (because

 Thoowowerei| -

sin(A12) = /%“;”) )

Using the identity cos A = 2 cos? (A/2) - 1, one proves similarly that
s(s-a)
AR) = |22
cos(. )_ T

anary - 500D _ [6-h 69
(A/2) os(AZ) %) and cot (A/2)

_ s(s—a)
“Ve-bs-0) "

The ratios of B/2 and C/2 are similarly obtained.

Again sin A = 2 sin(A/2) cos(A/2) =2 ’&M "'("——al
be be

= é,}s(:—a) (s-b)(s-c).

The expressions for sin B and sin C are similarly written down.
Theorem 12, (Arca of a triangle). If A denotes the area of triangle ABC, then
A = (1/2)be sinA = (1/2)ca sin B = (1/2)ab sin C.
The proof is left to the reader. One has only to use the formula area = (1/2) (base)
(height) for a triangle and consider the three cases A acute, A obtuse and A a right

angle. The case A acute has three subcases as usual. a
Corollary 1. A= ,/s(: -a)(s-b)(s-c¢) (Heron's formula)
=2R?sin A sin Bsin C.
Proof. We have A=(1/2) besinA
=(112) be. g s(s—a)(s=b)(s-¢)
= Js(s—a)(s-b)(s-0).
Also A=(12) besinA
=(1/2)2Rsin B- 2R sin C - sin A
=2R*sinA -sin B -sin C. a
_abc —
Corollary 2. (@) A= s _ (b) v
The proofs of these simple relations are left to the reader. =]

EXAMPLE 4. [fintriangle ABC.a= 13, b=4,¢c= 15 find A and R.

SOLUTION, We have s= a¥hee =16;s05-a=16-13=3;5-b=16-4=12;
s-c=16-15=1 :
Hence A= Jﬂ?a)(:—b)(s—c):JlﬁX3X12Xl = 24 square units.
abe _13x4x15_ 1

= = =8— units.
R=a™ axze 8¢
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EXAMPLE 5. Show that, ina rriangle ABC,
coh+cor Breon C _a’ b’ +c’
o +cot Brco§ (@+b+cf

cosA B +ci-a° b+t -a’
SOLUTION, We have CHA=GnA ZbcsinA A
Siﬁhtcxpwniumforwﬁmdcuc‘:nbewrinendown.
So cotA+cotB+cot C
b’+t’-az+c1+az—b’ +a’+b2—cz
Iy aA aA
_d+p+d
- 4A
A B C
-— — % Ccot —
Aguin G TR

’ s(s-a) ) s(s-b) 2 s(s-c)

‘ws-b)(s-c)+V(s-c)(5—a) V(J-a)(s—b)
_ sls—a)+(s-b)+(s=0)] _ VsVsl3s-(a+b+0)]

Js-a)s-b)(s-0)  s(s-a)(s-b)(s-0)
2

_5Gs-29 s
e L

Hence L.H.S. of the given relation
‘ =az+b2+r:z i az+b:+(:=R.H.S.
4A A 45"

A-B
a+b i
1. Show that (a) o A%E"
2
sinA-B
a-b S5 b-c_A__B-C
®) —a+b_—z—ﬁ-A*B' (©) P ety vk

2. Prove Appollonius’s Theorem using the Cosine Rule : *If ABC is a tnangle and D is the
midpoint of BC, then AB® + AC® = 2 (AD? + BD?): Hence evaluate the lengths of the
medians of a triangle in terms of its sides. (You will find the answers in Theorem 28 of
Chapter 4).

3, Prove the following generalisation of the result in Problem 2 above : 'If ABC is a triangle
and D is a point on BC dividing it internally in the ratio m : n, then
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(m+n)-AD?=m-AC? +n-AB? -
m+n
mumwmnnamwwmummu
4. If the internal bisector of angle A meets the opposite side BC in D, show that

2bc A
AD= 2X A
e 2

Hence or otherwise show that if the internal bisectors of two angles are cqual in a triangle,
then the triangle is isosceles.

5. Ifinatiangle ABC.a=13,b=4,c= 15, find its altitudes A,, Ay, b,

6. If in atriangle ABC, h,, hy, h_are its altitudes and a 2 b > c., show thata + b, 2 b + by 2

c+h.

7. If SX, SY, SZ are the perpendiculars dropped on the sides BC, CA, AB of a triangle ABC
from its circumcentre S, show that SX = R cos A, SY = R cos B, SZ = R cos C.

8. Prove that, in any triangle ABC,

(D) @ cos(B - C) + b* cos (C - A) + * cos (A - B) = 3abe;
(if) @ sin(B~C) + b sin (C-A) + sin (A~ B) =0.
9. Show that, in a triangle ABC,
() 4A=Hsin2C+32sin 2B ;
@ A=— .
2(cot B +cot C)
(iif) 1687 =26 + 2307+ 2a° - a* - b* - A,

10. If P is an interior point in a triangle ABC, then
sin ZPAB - sin ZPBC - sin ZPCA =sin ZPBA - sin ZPCB - sin ZPAC.
State and prove the converse of this result.

11. If D 1s a point on the side BC of a triangle ABC such that BD : DC =m : n, and ZADC
=6. ZDAB = a. ZDAC = P, then show that
(i) (m+n)cot@=mcota—ncotB,

(ii) (m+n)cot@=ncot B—mcot C.

12. If P is an interior point of a triangle ABC, such that £ PAB = ZPBC = ZPCA = w, then
show that
() cotw =cotA+cot8+cotC;

(if) cosec? w = cosec? A + cosec? B + cosec? C.

13. (a) Prove geometrically that a = (b cos C) + (c cos B).

(b) Prove the cosine rule using the sine rule [Hint : First prove a = b cos C + ¢ cos B and

1wo similar relations (see Example 1). Then solve for cos A. cos B, Cos C).

14. Given the numerical values of sides a. b. ¢ of a triangle ABC, its angles A, B, C can be
found by using any of the expressions for the sines, the cosines of the angles A, B, C, or
the sines, the cosines, the tangents, of the angles A/2, B2, C/2. But generally the
expressions tan A/2, tan B/2, tan C/2 are preferred to the others while using the logarithmic
tables. Explain why.

15. Two tnangles have the same perimeter and area. If the sides of one triangle are 51, 35, 26
and one side of the other triangle is 41, find the remaining sides of the latter.

16. Solve the triangle ABC. given side a, angle A and the product k = b ¢ of the other two
sides. Under what conditions does the triangls exist?
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n-sided regular of side ainscribed in a circle of radius R and circumscribed

" l:a::m:duﬁﬂ%memomnpdygmmm of (i) a (if) r (iif) R. Also
express R and r in terms of a. )

18. Snppou-wingleABCislobesolvedgivenb.tmdﬂ.l:'sednsmcmle'loshowqm
(0] if B is acute; then no triangle, one right triangle, two triangles oroff)cmangle exists
mdin;asb<csinB.b=csinB.c>b>csinBorb>r.(ianB}ngalcrmanm
eqnllm%‘,lhmexwdyooesolnﬁoneximifb>cmdmothawuc.

19. Discuss the ambiguous case of Question 21 above algebraically considering the relation
B2 = +a?—2 ¢ acos B as a quadratic equation in a abd solving it for a.

20. Solve the following triangles:
() a=121,b=94,c=135.
(iif) a=55.A=65° B=38".
(v) a=125,b=112,A=40°.
i) b=l,c= J6-V2.B=T5°.  (vili) a=100,b=80,A=130".
(ix) a=70, ¢=563,C=100°. (x) a=3,b=5,c=17.

(i) b=108,c=77,A=76".
(iv) b=37,c=42,B=52".
i) ¢=13.1,a=175,C=49"

C. The Incentre and the Ex-centres:

From Theorem 24 of Chapter 3, we know that the internal bisectors of the angles of a
triangle are concurrent and that the point of concurrence is equidistant from the sides.
‘We recall that r denotes the inradius of a triangle.

Theorem 13. In a triangle ABC, the inradius is given by

r= L =(s—a)lan§=(s-b)un ; =(:-c)un§

=4Rsin A sinﬁsins.
2 2 2

Proof. (i) With reference to Figure 6.38
AABC =AIBC +AICA + AIAB
A=(1/2)BC-ID + (112)CA - IE + (112)AB - IF
=(112) (ar + br + cr)
=(12Na+b+c)r=sr

That is,

Fig. 6.38

A
Hence i (as already seen in Theorem 37 of Chapter 4).

oo
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(if) Again from triangles /BD and ICD, we have

BD = 1D cot LIBD = r cot(B/l2),
and CD =1ID cot LICD = r cot(C/2).
Adding we have

a=r(cot B/2 +cot CI2)
So —-— 5 a == 2R sin A sin(B/2) sin(C/2)
. B+C
cot — = Sl
7 Heot 7 sin=>
= (2R - 2sin(A/2)cos(A/2)sin(B/2)sin(C/2))/ cos(A/2)

=4R sin isinf sins.
2 2 2
(iif) Since AE and AF are tangents to the incircle we have AE = AF.

Similarly ~ EF = BD, CD = CF.
2s=a+b+c=a+AE+EC+AF+FB

Now
=a+2AE+CD+BD=a+2AE + BC
=2(a+ AE).

So AE =s-a=AF (as already seen in Theorem 33 of Chapter 4).
A

So r:(.\'—a)um?.

Similarly from triangles /BD and ICD, we obtain
’=(.\‘—b)lan§andr=(:—c)um§‘ .a
Again from Theorem 30 of Chapter 4, we know that the external bisectors of any
two angles of a triangle and the internal bisector of the third angle are concurrent and
that the point of concurrence is equidistant from all the three sides of the triangle. Let
1, 1, 13 denote the ex-radii of the triangle. Note that in chapter 4 we have called these

Tas Tw T .
Theorem 14. In a triangle ABC,
A B
n= AL =stan — =4Rsin —cos—cos—g.
s-a 2 2 2

e

Proof. (/) With reference to Figure 6.39,
quadrilateral ABIC = AABI, + AACI,

= AABC + ALBC
AABC = Al,CA + ALAB - ALBC

Hence

That is, A =(I/2)ACHF, + (1/2)AB I, F) - (1/2)BC.I\D;
=(172) (bry + cry - ar))
=(12)b+c~a)n=(s-an

Therefore

Similarly
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Recall that this is Theorem 37(2) of Chapter 4.
(if) Again from triangles /y BD and I, €D,
BD, = ,D cot ZI,BD
=r; cot(90° - B12)
=ry tan (B/2);
and €D, =1,D; cot LI,CD,
=r, tan(C/2).
© Addingweget  a=ntanB/2) +an(C/2))

a

So = B\ nii€
—+tan
L 2 Fig. 6.39

2R sin A - cos(B/2) cos (CI2)
= . (B+C)
sin ~————
2

Sl A B - C A
=2R - 25in =08 — COS — COS — + COS—.
2R m2 2cos2 3 2

=4R sinAcos—B—cosEA
2 2 2

ol (of A
Similar} = 4R sin— COS— COS —
( ty r nn2 > 2
3340 A b‘)
and =4R sin— — cos =
3 m2 cosz 2

(iii) Finally, since AE, :nd AF are tangents to the excircle, we have AE, = AF,.

Similarly BD, = BF) and CD, = CE.

So 2s=a+b+c=BC+CA+AB
=BD, +D,C+CA+AB=(AB + BF)) + (AC+ CE))
=AF, + AE, = 24E,

That is, AE, =s=AF,

[Note further that BD, = BF, = AF; - AB = s - ¢, and CD, = CE; = AE, - AC = s - b Recall
Theorem 34 and its corollary, from Chapter 4].
Hence from triangle /,AE,, we have

r,=l.£,=A£,un/A£.=mn§

(Similxrlyrz=sun-2€mdr,=;m?c‘) o

EXAMPLE 6. Show that ry—ry + r; + r = 4R cos B.
SOLUTION. Wehave  ry—ry+ry+r=(r+r) - (ry=n).
C. A B C

Now ’I“"):‘Rsmﬁ cos 2 c0s— + 4R cos — cos— sin—
2 2 2 2 2 2

=4Rcos£sin ALC =4Rcosz£_
2 2 2

in, T LT N S
Again, 2 2 2 7 —4Rsin—rsin7rsin 5
i A AEC B
=4R sin —c =4Rsin* =
2 0s 2 R sin 2

B
Hence 'x-fz+r:+'=4kcos’5 —4Rsinzg

:B B
=4R|cos” — - —| =
( 3 sin Z) 4R cos B.

EXAMPLE 7. If one of the ex-radii of a triangle is equal 10 its semiperimeter, then the
triangle is right-angled.
SOLUTION. Let ry =5, We know that r; = s tan %

Hence lan%=lwnichmeans§=45°.1'hatis.A=90°.
EXAMPLE 8. fr: b + ¢ :a=2:17: 13, then the triangle is right-angled.
SOLUTION. Let r=2Ab+c=17ha=13\
We have r=(:—n)lani=l(b+c-a)uné
2 2 2
(mi_L_L
2 b+c-a 1TA-13A
EXAMPLE 9. Show that
1.1 1 1 _ad+b+c
S e e S ——pe—
2 g D

= 1. Hence A = 90°.

2 2 2
s=a): . =8)" (5—10)

SOLUTION. We have  L.H.S. T 3
A A A

1
= E[E&(x-a)"*-(-‘—b)’*(s-f)l]

1
= F[4.\"-2(a¢b+r)x+az+bz+cz]
2 2 2
= _‘i"‘i =RHS.

EXAMPLE 10. Show that R > 2r and that equality holds good iff the triangle is
equilateral.
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SOLUTION. The givea is equi 10 the following
A BT er i
insin —sin —S— withequality iff A=B=C.
sin 7 sin 2m 253 ty
i f—mz lin£
We have " 2 2
o e
2 cos -sms]sin£
=2 212
S%[I lin-g—
=l[n‘ -nn’-(—:—
2 2 Z
i1 ... eY].a
= z[?'(i"'"?) ]‘s
The equality holds good iff cos =1 and sin %=% which happens iffA = B
=C (= 60°).

EXERCISE 6.9 (

Prove the following relations for a triangle ABC.

1.
2,

3.
4.
5.
6.

O
bl

L 1§ T

nry4ry 4nn=s,

rmy+rry+rry=ab+ be+ca- st

n+rn+n-r=4R

1. Red+r +P=16R-a - -
8. (ry=r)r;=r)(ry-r)=4RA.

9. acotA+bcotB+ccot C=2AR+r).
10. (rz+ r3)ry + )(ry + r2) = 4Rs%.

. ryrary=rst,

b-c’t-a"n-b
i n

g8 1.1
b atab 7R

=0.
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14, 4R +r =r =64R - 6R(@ + b + ).

15. (The excentral triangle). The triangle formed by joining the excentres /y, Jy, I3 of a triangle
ABC in pairs is called the excentral triangle of triangle ABC. Show that
= -
(i) its angles are “T 'TB }2—‘:;

(it its sides are 4R cos %_uzw, B iFeonCs

2 2
(iif) its circumradius is 2R;
(iv) its inradius is M[sin%fﬁng+ sin%- 1)
(v) its arca is 2Rs.
16. If the internal bisectors of angles A, B, C, on a triangle meet its circumcircle in A", B.C
respectively, then show that (i) A” is the circumcentre of triangle /BC; (if) the arca of

triangle A" B’ C'is %R:.

17. 1 D, E, F are the points of contact of the incircle of a triangle ABC with its sides then

show that
. . A B C
() the sides of triangle DEF are 2r cos ?.ZICOS E',ZICOI ?:

n-A x-B x-C

(ii) its angles are iy 2

(iif) its arca = Rrsin A sin Bsin C= %

18. If dy, d,, d; are the diameters of the excircles of a triangle ABC, then

a,b e didied
d dy dy a+b+c ’
19. If the ex-radii ry, rz, ry of a triangle are given, explain how to find its sides. Hence find a,
b,cgivenr,=21,r,=24,r;= 28,
20, If the incircle of a triangle passes through its circumcentre, then show that cos A +cos B

+cosC= V2.
21. (a) Show that ry, r;, ry and — r are the roots of the equation

¢ - 4R+ %(nlobzot:lx"—A2=D
(b) Hence deduce that :
(i) P47 +1 - P =64R —6R(@® + b7 + )
(i) i 47 47+ A= 256R - 32R @ + b2 + )
R )

22. In a triangle ABC, show that
(i) IAIB.IC =4Rr*
(i) My 10,01 = 16R%r.
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iy MR +nB =0+ =1+ 13
() IALBIC=4Rs".
D. The C ntre, the Pedal Triangle, the Centroid, the Cl .
and the Incentre

(a) Let ABC be a triangle. We know
The point of

from Theorem 26 of Chapter 3 that its altitudes
is called the orthocentre of the triangle and is
denoted by O. The orthocentre falls within or outside the triangle according as the
triangle is acute- or obtuse-angled (figures 6.40 and 6.41). If ABC is right-angled, say
at A, then its orthocentre O coincides with A, as do the feet of perpendiculars from
B and C (figure 6.42). In the first two cases (that is, when triangle ABC is acute — or
obtuse-angled) it can also be observed that A, B, C are repectively the orthocentres of

triangles
7] (2]
& A
B X c B [of

Fig. 6.40 Fig. 6.41

OBC, OCA, OCB. Let us hereafter consider only gled triangles. If the altitudes
through A, B, C meet the opposite sides in X, ¥, Z respectively, then the triangle XYZ
formed by the feet of these altitudes is called the pedal triangle of triangle ABC. Also
we have six cyclic quadrilaterals namely OYAZ. OZBX, OXCY BCYZ, CAZX and ABXY.
(see Fig. 6.43) Further the triangles AYZ, BZX, CXY are all similar to triangle ABC.
From these facts it can be deduced that

(i) the sides of the pedal triangle are a cos A = R sin 2A; b cos B = R sin 28B; ¢ cos

C=Rsin2C.
(if) its angles are & — 24, - 2B, n - 2C;
(iii) the orthocentre O of triangle ABC is the incentre of its pedal triangle XYZ.

.0
z
B C 8 X c

Fig. 6.42 Fig. 6.43
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The proofs of these statements are left to the reader. Observe that any triangle ABC
is itself the pedal triangle of its excentral triangle and consequently the incentre of a
triangle ABC is the orthocentre of its ex-central triangle.

(b) If ABC is a triangle and AA,, BB, CC,, are its medians, we know from Theorem
25 of chapter 3 that these are concurrent at a point usually denoted by G and called the
centroid of triangle ABC. It is also known that G divides each median in the ratio 2:1,
that is. G is a point of trisection of each of the medians.

A

Fig. 6.44

Specifically. AG:GA, =BG : GB, = CG : GC, = 2:1. (see Fig. 6.44)

The lengths of the medians are given by AA, = (1/2) y2b° +2¢* - a*, BB, = (172)

2t +2a° —b%.CCy=(112) {247 + 257 —¢* (see Problem 2 of Exercise 6.9 B). It
is known that from Theorem 56 of Chapter 4 while the centroid G divides the line
segment joining the orth, 0 and the ci S in the ratio 2:1, the nine-
point centre N divides the same line segment OS in the ratio 1:1, that is, N is the mid-
point of OS.

(¢) Let S be the circumcentre and / the incentre of a triangle ABC. In Fig. 6.45, S is
shown as the point of i ion of the perpendicular bi of BCand CA, and /
as the point of intersection of the internal bisectors of angles A and B. Join S/. We use
the cosine rule in triangle AS/ to evaluate S/. For this, we need to know A/, AS and
ZIAS. If IF is perpendicular to AB, then from triangle JAF,

IF

= 4R sin(B/2) sin (C2).

Clearly AS=R.
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Also  ZSAB, =90° - LASB, =90° - (112) LASC
=90° - ZABC=90°-B.
A B-C
So AMS:AMC—ZSA(.':;—(”'-B)’_Z_A
Hence SP=AS? + AP - 2AS - Al cos LIAS

= R+ 16K sin? ; sinz-;': ~2-R-4Rsin g sin % e ke

=R? l+8sin£sin£ ZsinBsinE—cose——C]
2 2 2 2 2
B+C
2

=R [l-sﬁngsing.cos

=R [I-—Bs‘m%singsing] =R*-2Rr.

Thus we have proved Euler’s theorem (Theorem 4.3 of chapter 4) trigonometrically:

SP=R*-2Rr.
Similarly, using the cosine rule, we can find expressions for SIf, SO, 107, 1,0%etc.

EXERCISE 6.9 D

1. The altitude through A on BC meets BC in D and the circumcircle of triangle ABC in E
when produced, Show that OD = OE.

2. Show that the distances from the orthocentre to the vertices of a triangle ABC are 2 R cos

A, 2R cos B, 2R cos C and its distances from the sides are 2 R cos B cos C, 2 R cos C cos

A, 2R cos A cos B.

Show that in a triangle the distance from the orthocentre to any vertex is twice the distance

from the circumcentre to the opposite side.

4. Let ABC be a triangle, O its orthocentre and XYZ be its pedal triangle.

Show that

(a) the sides of the pedal triangle are a cos A, b cos B, ¢ cos C.

(b) its angles are ® - 2A, ® - 2B, n - 2C.

(c) itsareais 2 A cos A cos B cos C.

(d) its circumradius is R/2 and its inradius is 2R cos A cos B cos C.

(e) its incentre is O.

Prove that the circumcentre of a triangle ABC is the orthocentre of the triangle formed by

the midpoints of the sides of triangle ABC.

Prove that the median through A divides angle A into two parts whose cotangents are 2

cot A +cot Cand 2 cot A + cot B and makes, with BC an angle whose cotangent is (1/2)

(cot B-cot O).

7. Four geometrical proofs of the famous Feuerbach's Theorem have been given in Chapter

4 (Theorem 59). Using the methods of this chapter, give a fifth proof.

Prove the following for any triangle ABC. (Some of these have already been proved

geometrically in.Chapter 4. The ponding are given in p: )

@) SIF = R1 + 8 sin(A/2) cos(BI2) cos(C12)] = R? + 2Rr,.

“w

L

o -

(if) 10" =2r*~4R? cos A cos B cos C.
(iii) SO = R*(1 -8 cos A cos B cos C) = 9R?- g p2 - 2.

(Corollary 1 of Theorem 48)
(i) 10?= 25} —4R% cos A cos B cos C.
() IN=(U2)R~r.
i) IN=(/2)R + r,.
(i) SG*=R*~(119) (@® + b* + ¢3), (Cor. 3 of Theorem 28)
(viii) AO?+BO? + CO*- $O* = 3R? (Cor. 2 of Theorem 48)
(ix) SP+ SIT + 513 + SI? = 1282, (Theorems 43, 44)

1
(x) AN = ;R’(chosAsinBsinO: %(R’-ahb’oc’).
(Cor. of Theorem 57 gives AN? + BN? + CN?).
(i) a AP +b-BP +c-CP=abe.
(xii) a- AIf ~b-BI} —c-CI? = abe.
B-C . C-A_. A-B
Sip —— sin .
2 2
9, Ifany lwx.) of the four points S, /, G, O coincide then the triangle is equilateral.
10. If ABCD is a cyclic quadrilateral inscribed in a circle of radius R with AB = a, BC = b,

(xiii) Area of triangle SO/ is 2R? sin

cD=c.DA=d.scmipcrim:rs=_a¢b;t+d,|benshowlhal
2
cos A = LR .
(i) cos TR @+d - -3,
(i) sinA= : Vis-a)(s-b) d,
if) s /-adbbc s—a)(s (s—c)(s-d).
@iii) A= J(s-a)(s=b)(s-c)(s~d).
. (ac +bd) (ad +bc)
W) AC= " ved "
(ac +bd) (ab + cd)
8Ds |l | ¥
J - ol (Brahmagupta’s Theorem)

(v) ac + bd = AC.BD (Ptolemy’s Theorem).

) R= 3 (ab + cd) (ac +bd) (ad + bc)
TG G-bG-a6-d)
A_ [(s-a)(s-d)

2 VG-b-0
(viii) The product of the segments into which cither diagonal is divided by the other is

(wir) tan

abed(ac +bd)
(ab+cd) (ad +bc)  *

1, Interpret |82+ e +EO) (o veference to the above problem.
ac+bd
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12. (a) If ABCD is a quadrilateral with the same notation for its sides, semiperimeter and
muinpoﬂunNtbov:.mdA«C:lu.m
A= J(:-a)(:-b)(:-m:—d)-abcdous’a.
() 'l‘h=avuohquadlihlenlish.llfd\epmductofitsdilgmlalsmdtbesineom,e
angle between them.

6.10 HEIGHTS AND DISTANCES

In this section, we consider some useful problems in which we calculate the distance
between certain points or heights of objects such as towers, buildings, and mountains,
which are not directly accessible. Of course we need to know certain other measurements
such as lengths and angles, which can be found in practice with the help of instruments.

H [

Fig. 6.46

Suppose P and Q are two points in a vertical plane at different horizontal levels.
Suppose PH and QH are the horizontal lines in the plane through 7 and Q as shown in,
Fig. 6.46, then angle HPQ = a is called the angle of elevation of Q relative to P (or as
seen from P) and angle H'QP = B is called the angle of depression of P relative to Q.
Obviously these two angles are equal as the horizontal lines are in the same vertical
plane.

EXAMPLE 1, The angle of elevation of the top of a tower is observed to be 30° from
a point on the ground. After walking a distance of 50 metres towards the tower the
angle of elevation is found to be 60°. Find the height of the tower.
SOLUTION. Let PQ be the tower and A and B be first and second points of observation
respectively. The whole observation is taking place in one vertical plane as indicated
by the data of the problem (A, B, Q are collinear)
Also LPAQ =30°, ZPBQ = 60°, AB = 50 metres.
Let PQ = x metres.
From triangles PAQ and PBQ we have

AQ=xcot30° and BQ =xcot60°

P

——50m —={
Flg. 6.47

| Toowoserr | —

AB 50
He r=s — = =m .
e cot30°-cot60° y3- N3 3

Thus the height of the tower is 25 «/5 metres.

LE 2. From the top of a mountain the angles of depression of three consecutive
milestones on a straight road are observed to be a, B yrespectively. Find the height of
the mountain.

SOLUTION. _The point of observation (that is, the peak of the mountain and the mile
stones are not in the same vertical plane, in this case, Let P be the point of observation
and PQ be the pc{'pen_dlcular drawn from P to the ground. Join P and Q to each of three
points A, B, C which represent three collinear mile stones. From the hypothesis £ PAQ =
o, ZPBQ =8, él_’CQ:r Let PQ=h.Then AQ=hcot o, BQ=hcot B, CQ=hcot Y.
We look at the triangle QAC (in the horizontal plane) for which QB is the median
through Q. We apply Appollonius’s Theorem to get QA2 + QC? = 2 (0B + AB?). That
is, ¥ cot? &t + h? cot? y = 2(h* cot? B + 1). Solving for h, we get
.
(cot’ a+cot’ y -2 cot’B)"?
Hence the height of the mountain is 4 miles where h is as given above.

Fig. 6.48

EXAMPLE 3. A man wishing to ascertain the distance between two objecis in a
horizontal plane walks along a straight road and observes that at a certain point on
the road the rwo objects subtend the greatest angle & he walks a distance c along the
road, and finds that the objects are in a straight line with his position and thai this line
makes an angle B with the road. Prove that the distance between the objects is

2c sina sinb A

cosa+cosh

Fig. 6.49
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Q be the two objects and A and B be the two points of
nds maximum angle o at A, AB is tangent to the circle
passing through P, 0, A. Also ZPBA=Band AB=c.1If ZBAQ =0, then LAPB =9
(angle in the alternate segment). Then from APBA,
we get ﬂ+e+{a+0)=l80“.
Therefore 0 = (180° — a - B)/2. From triangles PQA and BQA, we have
PQ _ AQ AB___ AQ
sina sin®  sin(a+8) sin’
Dividing the first relation by the second, we get
csinasin B
sin @ sin (0. +0)
_ csinasinp
() s
_ _csinasinp _ 2csinasinf
S " cos %38 cos 5P cos e +cosP

EXAMPLE 4. A flagstaff on the top of a tower is observed to subtend the same angle
aat two points, distant 2 a from each other and lying in a line through the base of the
tower in the horizontal plane; and an angle P at a point half way between them. Prove
that the height of the flagstaff is

. 2sinb
asin@ [————.
cosa sin(b - a)

SOLUTION. Let P and
observation. When PQ subtel

PO=

Fig. 6.50
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4 A Mwlhoﬁzﬂiplmeirxlhedmlhcuﬂﬁ-nmgleﬂmmegmund_m
d;ﬁomdinwﬁmmpoinudxmndimamdbfmmthcfoolo{un
pokmandﬂmpeaivcly‘smmn

0t aentﬁ-bcom_

a-b

s Ahddeti:mclilcduanmsleawth:pwmﬁmilsmymﬁngmlhewall.Whemhe
bomomslidulhmuﬂl-dinmeuwayﬁomlhewﬂl.!heinclinlﬁonofﬂ)eladdenome
pwndisﬂ.Showdmdrmpoflhelnddawmddhnv:dew:ndcdﬂmghaheigmof

a-B - a+f
€ Cos 2 » 2

6 Ammmmhhnwdkedcmupmimlinedplmc.lheangulu
miudmobjeainabaimxlplmlhmghthefoo(onbe slope is c, and that
when he has walked a further distance of ¢ metres, the depression is . Prove that the
inclination of the slope to the horizontal is cot”! (2 cot B+ cot ).

7. Aflagstaff is on the top of a tower which stands on a horizontal plane. A person observes
that the flagstaff and the tower subtend angles & and f at a point on the horizontal planc.
He then walks a distance a towards the tower and finds that flagstaff subtends the same
angle . Prove that the height of the tower and the length of the flagstaff are respectively

asinBeost@+f) , _asina
cos(a+2B) cos(a+28)

8. At each end of a horizontal base of length 2a it is found that the elevation of a mountain

peak is  and that at the middle point is ¢. Prove that the vertical height of the peak is
asin B sin &
(sin(¢+ ) sin (6~ 8)]*

9. A man walks along a horizontal circle round the foot of a flagstaff, which is inclined to
the vertical, the foot of the flagstaff being the centre of the circle. The greatest and least
angles which the flagstaff subtends at his cye are & md PB: and when he is midway between
the corresponding positions the angle is 8. If the man’s height is neglected, prove that

1an 0= sin?(a - B) + 4sin>sin® Psin(a +5) -
10. Two lines inclined at an angle y are drawn on an inclined plane and their inclinations to
the horizon are found to be & and B respectively. Show that the inclination of the plane to

the horizon is
sin”! (coscc‘(,)xin’a+sinzﬂ—2n'nusin])cosy)
and that the angle between one of the given pair of lines and the line of greatest slope on
this inclined plane is
- {nnB-smaoosy}

sin@cosy
6.11 ELIMINATION
Suppose we have two independ i ions in one quantity.
Then gen'enlly itis possible to eliminate this unknown between the two equations and
1; ing the other inthe ions. For le, suppose
we wish to eliminate x from the equations
px+g=0 m
and ar’ +bx+c=0. )

waouETY| 561

SOLUTION. Let AB be the tower and BC the flagstaff; P, T, Q be the points of
observation at which the flagstaff BC subtends angles c, B. a respectively. Since BC
subtends equal angles at P and Q, it follows that B, C, P, Q are concyclic. Let O be the
centre and r the radius of the circle passing through these four points. Let S be the
midpoint of BC. Then ASOT is a rectangle. Let BC = x, AB =y, QA = z. Then from
wriangle BPC,

FeiB o X
2sin ZBPC  2sina
£BOS =(112) £BOC = (112) (2£BPC) = .

Now
So TA = OS = BS cot &= (x/2) cot a.
That is, a+z=(x2)cota.
1If £BTA =0, then ZATC =B + 6, and so
_ _ tan(B+6)-tan@
tan B = tan [(B + 6) 01'—'—|+un(ﬁ+0)uno
x+y ¥
a+z _a+z___ x(a+2)
14 ZEY @+ 2 +(x+y)y
(a+2)
Also from triangles OTQ and OSB,

OT* + TQ? = 0Q* = OB? = 0§* + SB.

Thatis, (v + /2% +a® = (x/2) cot @) + &-.
Therefore xy + 32 = (x*/4) cot? o - a?.

x/2) cot
Hence tan B = T“;“)x—azT
(%) ot @+ (%) cot’ a-a
24° sinBsin’

Simplifying, we get ¥ = ————, ired.
implifying, we ge B u)cosa as desired

ERCIS!

1. The angle of elevation on the top of a mountain from a point on the ground s found to be
. After walking a distance a along a slope of inclination B towards the cliff, the clevation
is found to be . Show that the height of the mountain is

asin a sin(a - )
sin(y - a)

A man walking on a straight road finds that the line joining two objects on the same side
of the road subtends an angle a at some point on the road. After walking a distance b
along the road he finds that the line joining the two objects again subtends the same
angle @ After walking a further distance a he finds that he is in a line with the objects
making an angle & with the road. Find the distance between the two objects.
. A tower stands vertically in the interior of a field which has the shape of an equilateral

triangle of side a. If the angles of elevation of the top of the tower are @, B. ¥ from the

comers of the field find the height of the tower.

»

w

[Fisavoverny| -

From (1), we have x = - g/p. Substituting this in @
wi
a(-glpP +b(-glp) +c=0. b e get
That is, ag® + bp?q - cp* = 0, which is the result of eliminati .
Similarly if we have 3 ind d i ?n ;bm:mum‘ ?,ued g ehn(unan,[)
: d : % in general (n +
R

§——) R
p r d ' ly we can eli
fvom the given system and obtain the eliminant. There is no general method which is
lpplf:!,'e‘ to all cases a:m‘,evgu majority of the cases) and each problem has to be
treated in its own special way. A certain amou; il ity i ired i
o nt of ingenuity is required in some cases
EXAMPLE 1. Eliminate 6 from the equations
asin@=b, ccos"0=d.
SOLUTION. From the given equations we have
- sin 8 = (b/a)"™ and cos 0 = (dlc)'",
But sin’@ +cos? 6 = 1 for all values of 6.
So (blay¥™ + (/e = 1, which is the requi imi
. uired elim: 3
EXAMPLE 2. Eliminate 6 from the equations - -

xsin@-ycos @= \[x? 4y, 3

sin'q  cosq 1
a b ey “@

SOLUTION. From (3), squaring both sides, we have
7 sin? B - 2xy sin @ cos B+ 12 cos0 = 2 + )2,
Therefore x°cos’® + 2xy sin 8 cosB + y2 sin?0 = 0,

giving (xcos 8+ ysin0)2=0
Hence
So. sin” @

X g

and sin?f =

Therefore from (4),

O ST Ay —
v By eyt

a*(;

yielding vlat + vibt = 1.
EXAMPLE 3. Eliminate e and B from the equations:
sin @+ sin =1, )
cosa+cosf=m, ©6)
. tan(a/2) tan(f2) = n. (@)
SOLUTION. From (7), we have
l-n _ 1 - tan(a/2) tan(B2) _ cos(ct + B)2 -

1+n 1+ tan(a?2) an(P2) cos(a-Ppy2’
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Also from (5) and (6), . i
F+mz,2+2(m.¢oosﬂ+smasmﬂ)
=2 +2 cos(a — B) = 4 cos(a - B)2.
B 2m = 4 cosl( + BY2] cosl(a - BY2].
2m __cos@+P)2 ©
Henco @+m’) cos(a-py2

From (8) and (9), we obtain
(@ +md) (1 =n) = 2m(1 +n).

Eliminate 8 from the equations | (1) - (15)]
L acosB+bsin@=ciasin@-bcos@=d.
2. acos( +a)=x; beos(®@-P) =y.
3 Jcosﬂ—ysinesoos29:xsin0<-ycos0=2sin20.

ax by . axsin® bycos®
4. Cos@ sin® =a- b cos’ 0 o sin’ @ =0

5. Acos20=cos(®+ ), Asin20=2sin(0+ ).

6. cos? 8= (m? — 1)/3; tan’(6/2) = tan a.

7. 2cos@-cos20=a; 2sin@-sin20=b.

8. xcos 30 +ysin 30 =acos 6:
xsin 30 + y cos 30 = a cos(8 + (W/6)].

9, cosec 8- sin 6 =a: sin @~ cos 0 = b.

10, xcos(0 + @) + ysin(8 + ) = a sin 26:
yoos(B&a)—xs'm(Ofu):Zacosze.

11. sin@ +sin20=x; cosB+cos20=y.

12. tan 0 - tan 20 cot®-cot20=b.

13. xsin @ -y cos 8 = - sin 46;
xcos 8 +y sin 0 = (5/2) - (3/2) cos 46.

14, 1an(8 - &) +tan(® - B) = x; cot(® - )+ cot(® - ) =y.
cos(a—30) _sin(a-30)

cos'®  sin'® i

Eliminate 8 and ¢ from the equations [(16) - (21)].

16. sin@+sing=xicosB+cos¢=y, 0+0=a

17. an@-tan ¢ =aicotO-cotd=b0-0-a

18. sin@+sing=aicosO+cos¢=btanB+tano=c.

19. xcos@+ysin@=1,xcosO+ysino=1,
pcosBcosd+gsinBsing=0.

20, cos@+cosd=a; cot@+cotg=b; cosec+cosec o=

21, cosO+cosd=x; cos20+cos20=y: cos30+cos30=3.

o o
1. Ifm?+m?+2mm cos0=1,

40?4 200 cos 0= 1,
mn+m' w4 (m n+m n)cos 9 =0,
then show that m 4+ m = cosec? 9,
2. Iftan (%/4 + y/2) = tan® (W/4 + x12),
3sin x + sin® x
1+3sin’ x
3. If @, B are acute angles and
[sin(a — P) + cos(a + 2) sin BJ? = 4 cos & cos B sin (a + B),

Mshowthnlunu:unﬂ[v.‘( zm‘B l)"_‘J'

4. Show that
sin? 12° + sin? 21° + sin? 39° + 5in? 48° = 1 + 5in2 9° + sin? 18°,

then show that sin y =

5, Prove thar 22EYD) it lie between
tan(x - a)
tan’(%/4 - &) and tan’(w/4 + ).
6. Show that cos 8 (sin 8 + ,)s + a) always lies between = ‘)lf .

7. Prove that
sin’ (@- B sip’ (v~ 8) + sin’ (B - y) sin’ (& - §) + sin? (y - @) sin® (B - &)
=3 sin(a - B) sin(B — y) sin(y - asin(a - §) sin(B - ) sin(y - 8).
cot 3x
8. Prove that never lies between 1/3 and 3.
cot x
9, If sin x = K sin (A - x), show that
tan(x - A/2) = [(k = 1M(k + 1)] tanA/2.
10. If in triangle ABC. cot A + cot B + cot C = v/3 , show that the triangle is equilateral.
11. In triangle ABC show that
~2<5in3A +5sin 38 +5in3CS 33N
When does equality hold good on cither side?
12. Solve the equation cos” x — sin® x = |, where n is a positive integer.

13, Solve the equation : cos’ x + cos? 2t + cos?3x = 1.
14, Find all x in [0, 2 ], such that
2cosx<l i+sin2x - I-sin2xI$V2 .
15, If in triangle ABC,
a+b=tan(C/2) (@atan A + btan B), thena = b.
16. 1ff(8)=1-acos@-bsin®-Acos 20~ Bsin20andf(6) 20 for all real 8, then show
thata® + b* <2, A% + B* < 1. (Here a, b, A, B are real numbers).
17, Iftan (A/2), tan (B/2), tan (C/2) are in A.P. Then so are cosA, cosB, cosC. Here A, B, Care
the angles of a triangle.

-
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18. If o, + @p + Oy + @ = O then show that
4 4 4 : 4
x cos(6-a)+ ‘1!‘ sin(0 - @) = ‘xl cos o + nl sin o,
i=t - = i=
19. Determine the number of real solutions of sin x = x/100.
20. 1f cot? (B/2) = cot(8 + Q)2 - cot (8 — ax)/2, then show that cos8 = cos a cos f.

2L 1f 2 cos A = cos B +cos’ B, v/2 sin A = sin B sin® B, prove that sin (A - B) = £ 1/3,
22. Intriangle ABC, M is an interior point on side BC. If r, 7/, r” arc the inradii and ry. /),
are the ex-radii opposite A of triangles ABC, ABM, ACM. then show that

ol e

"l"l-’|
23. If x, X, X3, X, are the roots of the equation
#-x’sin2B+x2cos 2B -xcosf-xsinB=0,

s
show that z tan™ x; = nn + 2 - B, where n is an integer.
il

24. If A, B. C are the angles of a triangle, then tan™! (cotB cotC) + tan™" (cotC cotd) + tan™!

. (cotA cotB)

- l{ 8 cos A cos Bcos C l
W] e
sin® 2A +sin" 2B +sin” 2C ]

25. Suppose ABC is an acute triangle. Consider the triangle formed by the three direct
(external) common tangents (which are not the sides of tnangle ABC) drawn to the
excircles of triangle ABC taken pairwise. Find the angles, the sides, the area, the
circumradius and the inradius of the triangle so formed

26. If ABCD is a quadrilateral with AB + CD = AD + BC, then show that whether the

quadrilateral is convex or not, there is a circle touching all its sides (produced if necessary).

‘When is the radius of the ‘incircle’ of such a quadrilateral maximum for given lengths of

sides?

Eliminate a, B, ¥ from the equations

acosa+bcosP+ccosy=0,
asina+bsinB+csiny=0,
asec o+ bsecP+csecy=0.

28. [f 0 is an angle expressed in radians and 0 < 0 < /2, then sin 6 < 6 < tan 0.

29. Suppose ABC is an acute-angled triangle in a horizontal plane and P, Q, R are three
points directly below A, B, C respectively such that AP =x, BO=x+y, CR=x+ v+ 2. If
8 is the angle between the planes containing triangle ABC and triangle POR, show that
tan? 0 sin® A = y¥c? + 2/b* - 2 (y2Jbc) cos A.

30. The line joining two objects lying on the same side of a straight road on a horizontal
plane subtends two maximal angles a and f at two points on the road distant ¢ from cuch
other. Show that the distance between the objects is
c secf(e + B/2) (sin a sin )2
[1f the line joining the objects meets the road in P, then on either side of P, there is a point
on the road at which the line subtends a maximum angle.|

2

=

CoOoRDINATE GEOMETRY OF
STRAIGHT LINEs AND CIRCLES

7.1 INTRODUCTION

Descartes (1596 — 1650) re-created Geometry by using algebraic formulations and

methods. The Geometry that arose thus has been called Cartesian Geometry for that

very reason. It is also called Analytic Geometry or Coordinate Geometry for reasons

which will be obvious in this Chapter. The application of algebra to geometry which

became the fashion after Descartes’s time may well be named as the key step for all
ploration of natural ph by mathematics in the past three centuries.

We saw in the first chapter that points on a geometric straight line can be conveniently
described by the set of real numbers, once we fix our points corresponding to zero and
the number one. We saw through ples that certain ic problems on straight
lines have simple solutions if we describe the points on the line by real numbers and
use the algebraic properties of real numbers. Likewise, certain algebraic problems in
the set of real numbers have nice geometric solutions via the above correspondence.
Suppose now that one wants to describe points on a given plane by means of our
familiar real numbers. Imagine that we have a vehicle which can travel in only one
direction, but which can move both forward and backward in that direction. If we start
from a point, say O on a given plane, we can at best cover all theepoints on that straight
line through O, in the *direction’ of the vehicle. On the other hand, suppose our vehicle
can travel in two different directions, say Ox and Oy directions. Of course we assume
that the vehicle can go forwards and backwards in the above two direction. If P is any
pointin the plane, we may draw the lines through P parallel to the given two directions.
Let them meet Ox, Oy at A, B respectively. We start from O, move through OA units in
the direction of Ox and then AP units in the direction of Oy. This takes us to the point
P.In the figure 7.1 that we have drawn, our movements are in the forward direction,
both in Ox and Oy directions.

From figures 7.2, 7.3 and 7.4, it is clear that we may have to go forward or backward
along the two “directions’ of the vehicle, depending upon the position of P relative to
Oxand Oy.

If we have to move x units in the forward Ox direction and y units in the forward Oy
direction to reach P from O (as in the case of Fig. 7.1) we may associate the ordered
pair (x, y) of real numbers with P. Suppose we have to go x units backwards in the
Ox-direction and v units forward in the Oy-direction (as in Fig. 7.2) to reach P, then we
associate (- x, v) with 2. Similarly (- x. - y) corresponds to P in Fig. 7.3 and (x, - y) to

267

Chapter 7 Coordinate Geometry of Straight Lines and Circles Page 267
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B rosaoacsbmsns (crxmm.

4 4 4 ! 4
x cos®@-a)+ T sin(e-o,)=’flcosa,+'7_tl sin o

19. Determine the number of real solutions of sin x = x/100.

2. "00"(M)=000(0+ﬂ)f2~co((0-ay2.!henshowthalcos9=msucosﬁ. COORD'NA_'_E GEOM Y OF

21. 1f V3 cos A = cos B +cos® B, ¥2 sin A =sin B —sin’ B, prove that sin (A - B) == 1/3. STRAIGHT L'NES AND C,RCLB

22. In wiangle ABC, M is an interior point on side BC. If r, 7, /" are the inradii and . 7.
are the ex-radii opposite A of triangles ABC, ABM, ACM. then show that

L Al
' - n ]
23. 1f x;, Xy, X, X, are the roots of the equation 7.1 INTRODUCTION
2#-xsin2B + 2 cos 2B -xcos p-xsinf=0,
Descartes (1596 — 1650) re-created Geometry by using algebraic formulations and
methods. The Geometry that arose thus has been called Cartesian Geometry for that

4

. - isand isalsoics i

show that :Z: tan™ x; = + W2 - B, where 7 is an integer. vehriy l:c;?;nl;e“o’;vali:& 9:";4 Aél:/_mr GT;omeny or Coordinate Geometry for reasons
. ) whic in this Chapter. The application of algebra to geo i
24. 1f A, B, C are the angles of a triangle, then tan™! (cotB cotC) + tan™ (cotC cotA) + tan' became the fashion after Descartes's time may well be namid as megke;‘ :‘::' ;:I):"::l?
(cotA cotB) ploration of natural ph by mathematics in the past three centuries.

i 8cos Acos Beos C ] We saw in the first chapter that points on a geometric straight line can be convenientl!
=tan" {1+ — = =~ . ibed by th f i 4
sin® 2A +sin” 2B +sin” ZCI descri y the set of real numbers, once we fix our points corresponding to zero and
the number one. We saw through ples that certain g i blems on straight

lines have simple solutions if we describe the points on the line l';y real numbers and
use the algebraic properties of real numbers. Likewise, certain algebraic problems in
the set of real numbers have nice geometric solutions via the above correspondence.
Suppose now that one wants to describe points on a given plane by means of our

25. Suppose ABC is an acute triangle. Consider the triangle formed by the three direct
(external) common tangents (which are not the sides of triangle ABC) drawn to the
excircles of triangle ABC taken pairwisc. Find the angles, the sides, the area, the
circumradius and the inradius of the triangle so formed.

26. If ABCD is a quadrilateral with AB + CD = AD + BC. then show that whether the
quadrilateral is convex or not, there is a circle touching all its sides (produced if necessary) familiar real numbers. Imagine that we have a vehicle which can travel in only one
When is the radius of the ‘incircle’ of such a quadrilateral maximum for given lengths of direction, but which can move both forward and backward in that direction. If we start

from a point. say O on a given plane, we can at best cover all the-points on that straight

line through O, in the “direction’ of the vehicle. On the other hand, suppose our vehicle

sides?
27. Eliminate a, B, y from the equations
a.cos o+ b cos B+ccosy =0, can travel in two different directions, say Ox and Oy directions. Of course we assume
asina+bsinP+csiny=0, that the vehicle can go forwards and backwards in the above two direction. If P is any
point in the plane, we may draw the lines through P parallel to the given two directions.

Let them meet Ox, Oy at A, B respectively. We start from O, move through OA units in
the direction of Ox and then AP units in the direction of Oy. This takes us to the point
P.In the figure 7.1 that we have drawn, our movements are in the forward direction,

aseca+bsecP+csecy=0.
28. I @ is an angle expressed in radians and 0 < 8 < 72, then sin 6 < 6 < tan 6,
29. Suppose ABC is an acute-angled triangle in a horizontal plane and P. Q. R are three
points directly below A, B, C respectively such that AP =x, BQ=x+y. CR=x+y +2 If
9 s the angle between the planes containing triangle ABC and triangle POR, show that both in Ox and Oy directions.
From figures 7.2, 7.3 and 7.4, it is clear that we may have to go forward or backward

tan? @sin® A = y/c? + 2/~ 2 (y2/be) cos A.
30. The line joining two objects lying on the same side of a straight road on a horizontal along the two ‘directions’ of the vehicle, depending upon the position of P relative to
plane subtends two maximal angles a and P at two points on the road distant ¢ from cach Oxand Oy.
other. Show that m‘ d‘sl"""f:"“’“" the objects is ) If we have to move x units in the forward Ox direction and y units in the forward Oy
csec(e+ .W.21 (sin o sin B)"2. direction to reach P from O (as in the case of Fig. 7.1) we may associate the ordered
(lfdwliujoxninqlh:objofcu meets the road in P, then on either side of P, there is a point pair (x, y) of real numbers with P. Suppose we have to go x units backwards in the
on the road at which the line subtends a maximum angle.] Ox-direction and y units forward in the Oy-direction (as in Fig. 7.2) to reach P, then we
associate (- x, y) with P. Similarly (- x,-¥) corresponds to P in Fig. 7.3 and (x, - y) to
267

Often in geometry we are interested in distance between points. Consider now two

P in Fig. 7.4. We note that (1, 2) and (2, 1) correspond to lwo‘:iffmm‘zoin;;n me
plane (Fig. 7.5). Although as pairs of real numbers, !pey are the same they differ in points P(xi 1) and Q(xy, y,) with respect ¢
order. Thus, the above discussion enables us to describe points on a plane by th set Then OA = xi, AP=y,, OB =x, and g‘;‘;;:;l;:lgd :;c‘;;ngulnr axes X Ox and.y'Oy.
{(x, y)lx, y are real numbers} of ordered pairs of real number.r: once we ﬁf‘ a point O of a point could be positive or negative). From the ﬁgh l m(?;iel:’u l_hat the coordinates
as our origin and two different directions, which we call coordinate directions. PO*=PC*+ CQ*=(0A+0B) + (BO-BCY (- den i“8> o:'lnl:ilcircg we ggz
y yi = (x =x2)? + (1 = ¥2)? (see Figs. 7.7 & 7.8). 2 sign if x, < 0)
!
P, B '; y
A J Q)
A 0 x 0 x C Plcyyy)
P .
| —to— -
Fig.7.2 Fig. 7.3 Fgi7n

Fig. 7.1
To make things easier, we fix an origin in the plane and two perpendicular directions Suppose Q were on the other side of y axis to P as in Fi 3 2
as our coordinate directions. Let O be the origin and X'Ox, y’ = Oy be the straight lines = (%, - x2)? (note that 0B1 = Lxy) and 12’; 0 as in Fig. 7.8, we still have BA
in the plane along the chosen perpendi In fact, it is not hard to see that, for all positions of P(x,, y;) and QO(x3, y2) we have

ya
(x = x;)% + (3 = y2)? - The distance PQ = [(x, —x,)* +(y, - y,)? wecall

% I g P
.
the Euclidean distance between P and Q. For any point P(x, y) the distance from the
o(2,1) 3 2
% origin (0, 0) is {Jx™ + y* .
7} 3 o VS E4 EXAMPLE 1. The distance between A(1, 2) and B(-2, 3)
AB= Ji-(2n 3 =324 (<132 =
. A Ja-(2)* +@-3) =3+ 12=10.
The distance between P( /2, &) and Q(n, ¥3)
Fig. 7.4 Fig. 7.5 Fig. 7.6 PQ= ‘/(\/5 —nP+(n-V3) = \/27‘2 -2(2 +3)m+5
We note that the distance PQ = /(x, - 1) + (3 5 ¥,)* between the points P(x;, y;)

Then the points in the plane can be described by ordered pairs (x, ) of real numbers. If
P corresponds to (x, y) we say that x and y are the coordinates of P with respect to the
chosen coordinate axes Ox and Oy (Fig. 7.6). In
fact this d isal-1 de
between points on a plane and ordered pairs of real
numbers. Hence, a point P is completely
determined by its coordinates (of course, once we
fix our origin and coordinate directions).

Fix a pair of rectangular axes X'Ox, y'Oy as in
Fig. 7.6. Then any point on x’Ox axis is of the form
(x, 0) and any point on y'Oy axis is of the form
(0, y). We call ¥’ Ox the x — axis and y’Oy the y-axis.

and Q(x,, y,) is zero if and only if (x; - x;)* = 0 = (y; - y2)* which happens if and only
= y,. Thus the distance PQ between P(xy, y,) and Q(x3, ¥,) is zero if and
¥1) = Q(x3, ¥3). So, if we want to prove that two points are one and the
same, then either we may prove it geometrically or after fixing a pair of coordinate
axes, prove that the analytic distance between them is zero. We also note that the
distance PQ is the same as the distance QP and that distance PQ + distance QR >
distance PR for any three points P, Q and R.
EXAMPLE 2. Show that the triangle whose vertices are A(- 3, - 4). B(2, 6) and
C(=6, 10) is right-angled.
SOLUTION. We observe that AB?=(-3-2) + (-4~
BC? = (2~ (- 6)*+ (610 = 80
CA? = (-6 - (= 3))2 + (10~ (- 4)* =205

ifx; =x,,

62=125
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Thus CA2 = 205 = 125 + 80 = AB? + BC? and hence ABC is right angled at B.
EXAMPLE 3. Prove that the points A(3, - 5). B(- 5, ~4). C(7, 10) and D(15, 9) taken
in order are the vertices of a parallelogram.

SOLUTION. Wehave ~ AB?=(3—(-5)*+(-5-(-4)?=65
BC? = (-5 - T)* + (- 4-10)* = 340
CD? = (7157 +(10-9)* = 65
DA? = (15 -3)2 + (9 - (- 5))* = 340.
Thus in the quadrilateral ABCD, the opposite sides_ AB, CD“all'nd BC, DA are equal in
Jength, which implies that the quadrilateral ABCD is a p
EXAMPLE 4. Find the circumcentre and circumradius of the triangle ABC whose
vertices are A(1, 1), B(2, - 1) and C(3, 2).
SOLUTION. Let S(x, y) be the cil
Then AS? = BS? = CS? = 1. This gives
= 1P+ (- 12=(-22+(+ P =Gx-3)P+(-1)P=r)
This in tumn gives - 2x -2y +2=-4x+2y+5 = 2x-4y=3
~4x+2y45=—6x-4y+13 = 2u+6y=8

Solving, we get x = 5/2, y = 1/2. Therefore S is (5/2, 1/2) and the circumradius is

r= JF=1’ %—-l)2 +(4-1 ; =@ units.
To find the area of the triangle ABC with vertices A(xy, y;), B(x3, y2) and C(x3, y3)
We have area of ABC = area of trapezium APRC
+ area of trapezium CRQB
— arca trapezium APQB (see Fig. 7.9)
Q33

and r be the ci dius of A ABC.

Ax, )

Fig. 7.9
L
2
1 1 1
=301+ =)+ 5 02+ (1 -x)- 3 01 #32)x=x)
1
2

1
= iml()’z =)

We follow the convention the area bounded by an oriented closed curve r is positive if
the area enclosed by r lies to the left as one travels on r along its orientation; otherwise
the area is negative. Thus the area of AABC = — area of AACB. The area of the triangle

(AP + CR)PR + zl(CR + QB)RQ - 21(AP +QB) PQ

(2102 = y3) + X203 = 31) + 1300 - y2)}

| Capronure Geouera or Srawcs Les s G | 71

formed by three distinct points A Band C is zero if and only if they lie on a straight
line. Thus a necessary and sufficient condition that three points A(xy, y,), B(x, y;) and
i o
Clx3, y3) are collinear is 2 (X102 = 33) + 203 = y)) x50, - y2)} = 0.
EXAMPLE 5. Find the area of the triangle formed by A(2, 3), B(3, 0) and C(- 4, 2).
SOLUTION. Applying the formula for the area of a triangle in terms of the coordinates
of its vertices, we get
Arca of AABC'= 1 (200-2) + 32~ 3) + (- 4) 3- 0)) = - 19/2.

Note that we get area of AABC < 0 since the AABC has the negative orientation,
namely the clockwise orientation and as one travels around AABC, the area is to his
right.

i y
4(2,3) D (e, 57)
ceh2 > (2e, 3m)
% (e, %)
B(3,0) i
Io 3 0 3
Fig. 7.10 Fig. 7.1

EXAMPLE 6. Find the area of AABC where A is (e, x), Bis (2, 3 n) and Ciis (3 e, 5n).

1
SOLUTION. Area of AABC =5 {e(3r-5n)+2e(5n-n) + 3 e(n - 3m)}

1
= ;[—2ne+8ne—6m}=0

This implies that A, B, C all lic on a straight line.
Section Formula See Fig. 7.12. We know that given two points A, B there is only one
point on the straight line AB which divides the line segment AB in a given ratio. If the
given ratio is A > 0 then the point of division C lies between A and B such that AC/CB
= A; on the other hand if A < 0, it is external division and the point C lies outside the
segment AB such that AC/CB = \.

Now let A and B be the points (x;, y;) and (x,, y;) respectively. Let A = m/n be a
given ratio. The problem is to find the coordinates of the point C on the straight line

AB such that AC/CB = min = A.
Case () m/n=%>0

2]
A —_—Nn —A
A C B A B C
Yl

Internal division Extemal division

Fig. 7.12
Let Cbe the point dividing AB in the ratio m : n Then AC/CB = min. The triangles ADC
and CEB are similar (Fig. 7.13). Hence the ding sides are proporti




272

and this gives

_my; +ny,
T m+n

= —=——=—gives y
mx, +nx; my, +ny,
m+n

I&Ciu.yl'lhkn_'dpil(‘is[

(hml:—dnsd--<0-ih-.-hdqwdﬁv¢.mnpngnm—nmlhcabnvc
formula we get the corresponding point of division as

‘=[1“"—"'.M]

m+n

Z==2co
Also o] .<

*“dandwmdhﬂncﬂﬁm&umm
AB.

The triangles AFC and BEC are similar. Therefore

i = m AC _AF x-%
“|mn| m BC BE x-x,
: B el B ACCF o), ;
Solvisg we getx= —_ adt-'bﬂy” BC-CE y_nwh:renx.))
is the required point of division.

givesy = '—’:’T"'.mup—cmmmmuymMmmm is
E:igl.ﬂﬁfﬁ):dhpf-cﬁvﬁguwymmmwo is

oy myomy, --’-J
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Remark. Anypdn{?ov!&elniy)lﬁmudivﬁuhlimmuhhrdo
A PIPB = ). The ratio A is positive when P lies between A and B, and A is negative
when P lies outside the segment AB. (In this case AP and PB are of opposite oricntations

and hence AP/PB < 0). In cither case P has coordinates (M M)
A+l " A+l )

As we vary the parameter A, we get the various points on the straight line. Thus, the

i . s +X, Ay, +
mwwm"ﬂe“mmvmhﬂwsﬂ(( o -J{Tszthymdnumw.

A+l T A+
there is no point on the straight line AB which divides the line segment AB externally
intheratio 1 : 1.
As an immediate corollary of the section formula, we observe that the midpoint of the

line segment AB joining the points A (x;, y;) and B(xy, y,) is (% N ;}’1) by

A#-1). When A = -1, the point [M MJ is not defined. In other words,

taking A = | in the section formula.
To find the coordinates of the centroid of the triangle ABC with vertices A (xy, y),
B(xy,y;) and Cixy, y,).

A 0)

Fig.7.15
Let A’, B’ C’ be the midpoints of BC, CA, AB respectively. Then A" is
(m PRe? ,,,(u u)mﬁ,(a_w MJ
2 "2 R 2 "2 2, ¥ 12
We know that the medians AA’, BB’ and CC’ meet at the centroid G of A ABC and that
G divides each median in the ratio 2 : |

Gi Axy +x)+ Ly 2y +y) Ly,
" 241 241

Therefore

_(x+x +x, Yt +y]
= —1——1——13 .—‘——‘—J-J
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. ) 5 A is the point whose x, y
Thus the centroid of the triangle with vertices (55 )i 1.2.3 ™ i
Samates are the arithmeti of x,, X3, X3 28d 3. ¥, ¥ respectively.

int dividi & o 2 : foend to be ((x; + x; + x3)f

Remark. The point dividing AA’ in the ratio 2= | was fo be ((x; )
3.0.~y¢+y,ﬂvﬁd:bsymthx,md‘sym_n::;:,zz@es‘dﬂm
i isi divides the other two medians in 3 lncnd:uzl. ally
m“d‘rd“o of a triang} the point of divides
cach median in the ratio 2 1.
nuumau”mmmuxu-»wz—mnﬂ
Clxz,yy- )

mmldhmﬂihpﬁdmdmwmm
of the internal angles of triangle ABC. Let AD, BE and CF be the internal angular
umdwc.mmmmao.Lr(ﬁg.ms»./\s“hmsem
mms,wumm-:maux:nmc:quca&q =alc
ndAFIFB=b/awhata.b.cnd.nunlnxmelwglhsdlhesadcsBC.CA.AB
respectively. Hence D has coordinated™

Ay

Bixyy)
Fig. 7.16
c+b ' c+b

Again in AABD, the angular bisector Bl meets AD at 1.
Al _AB BD ¢ .
e —=; gives

D=(u’ +bx, Qy*b)z](mummfmh)

=80 N bc

BD c BD c

Using the section formula once more we get
[(tﬂ» chu) pax, (c+b) D7 +ay, |

1= c+b+a S c+b+a

a+b+c a+b+c

[mfv_wJ
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Remark. We have taken / as the intersection of the bisectors AD and BE and found its
ax +bx, +cx; ay, +by, +oy, ?
otsote (SIS Do) e

a+b+c a+b+c

i bisector CF also passes through J. In other words, this gi
Mdmrammwmummonwnmm
Wd-mhmm,nmmmdpﬁmxﬁgh
lines, curves and surfaces using the ion of points by their di which
are real numbers. and using their algebraic and other properties to the maxi extent
Mdbk_bucbaveswninthisintmdwmsecﬁon.poiminaplmeminm-one
m@uymmmdlulmnba!.mwﬁxowaiynmdm
ordinate directions. The points on a given curve will have their coordinates satisf fying
mmmgus‘lnwwrwmds.dnmomdinna;yofpdmmagimm
mmu:wﬁxm.mi&m»mmﬂyuﬂsﬁigmﬁu
£ Ox. Apoint (x. y) lies on this x-axis if and only if y = 0. Similarly a point (x, y) will
lkmugy-uisifandonlyifx=0.Ag:inford:wightlineLhisea'mglheangk
between the positive coordinate axis, we observe that P(x, ¥) lies on L if and only
if y = x. (see Fig. 7.17).
Myaammexmpk.miwhmmﬁmMMAis(l.O)ndBis
(o.|,_TmAAOBmsoscclesandAOAB:éOBA::M.lAP(x,y)bemypoimon
the straight line AB l!Mislh:foo(ofmepapmdimlzﬁ'unPonlhcx-uis.M
0H=xandMP=).Wchav:x+_»=0M+MP=0M4MA=0A=l(secFig,7.l8)-
m;adacana.sxlycheckdm;uy:lwhcmva'bed\epoimfouﬂuslaighllme
U,Alsaonccanchocklhanfx+y=lum(x.y)liesonAB.quyoonsiderdn
circle C with centre (0, 0) and radius a. If P(x, y) is any point on this circle then its

distance from the centre must be the radius a. In other words ‘[(x’ +y’) =aora+

y* =a*. Conversely, if ©* +y’=a:meu(x_y)i.saxad.inznce'a’fmdleccme(0,0)
and hence is a point on the circle C.

B 1)
Px.y)
y A(1,0)
x o 77 AL \ x
Fig. 7.17 Fig.7.18

The above examples tell us that points on each of those curves satisfy relations of
mff{'mﬂx. ¥) = 0 which we call ‘the equation of the corresponding curve’. Thus the
€quation of the x-axis is y = 0 the equation of the y-axis is x = 0; the equation to the
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straight line bisecting the angle between Ox and Oy isy=x;the A'aquan'op of the straight
line through (1,0) and (0, D) is x+y = 1; the equation of the circle with centre (0, 0)
and radius a is * + y* = a*. o

The equation of a curve Cis an equation of the form f (x,y) = 0 \Vhl‘Ch is satisfied by
the coordinates (x, y) of every point on the curve and by no other points.

‘When a point moves in accordance with certain given conditions, its path is called
the locus of the moving point. For instance, the locus of a point which moves in a plane

such that its distance from a given point A is always a constant » is the circle with

centre A and radius r.
1. Find the distance between

(i) @, - 3) and (=3, =6) : (ii) (3. 4) and (7, 11) : Gii) (at} , 2ary) and (ai} , 2y :
(iv) (acos 8, b sin 8) and (a cos ¢), b sin 0) : (v) (cty, ¢/ty) and (¢t clty).
2. Prove that (4, - 4), (=2, 4) and (6,10) are the vertices of an isosceles triangle.
3. Calculate the lengths of the sides of the triangle whose vertices are (8, 9).(-4,4).(4,-2).
4. Prove that each of the following sets of points forms a rhombus
@ (2.5),(6,2).2.-1),(-2.2)
(i) (3,4),(-2,3),(-3,-2). 2,-1).
5. Prove that each of the following sets of points forms a square.
@ (<3.1),(-2.-3), (2.-2).'(1.2)
(if) (0,2),(3.8),(9,5).(6,-1).
6. Calculate the area of the triangle whose vertices are
(@) (2,4),(7.9) and (9, 2) (i) (-2, 3). (7. 5) and (3, -5).
7. Show by area that the following points are collinear:
(2.2).(4,-4),3,-1).
8. Write down the coordinates of the points dividing the join of (- 8, 3) and (4, 9) in the
ratio (i) 2:1 (id) 1:5 (iif) 4:1 externally.
9. Prove that P(6, 2) is collinear with A(=2, 2) and B(12. 5); find the ratio in which
divides AB.
10. Find the ratio in which the di Is of the i i ABCD divide one
another (i) A(1, 5), B4, 1), C(7. 5), D(4.9)
(i) A(10, 10), B(14, 2), C(7,-2), D(2, 2).
11. Find the ratios in which the join of A(-2. 2) and B(4, 5) is cut by the axes.
12. Calculate the sides and the perimeter of AABC where A is (20, 50), B is (=20, ~46) and €
is (48, 5). Calculate the area of AABC and verify A? = s(s - a) (s = b) (s - ¢).
13. Prove that the four points (- 3, 11), (5, 9), (8, 0) and (6, 8) lic on a circle with center

(-1,2).

14. What are the coordinates of B if P(3, 5) divides the join of A( -1, 3) and B in the ratio
2:37

15. Prove that P(x, + 1(x; - x;), y; + 1(y2 = y1)) divides the join of (x;, y;) and (x,, y2) in the

ratio £: (1 -1).
16. Show that (2, 1) is the centre of the circumcircle of AABC, where A is (-3, 1), B is
(-1, 3) and C is (6, 2). Find the circumradius.
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17. Given AABC with vertices A(l, 2), B(8, 4) and C(4, 10) find the coordinates point
such that APCB, APCA -ndAmluvelheumcuu:inmimbndsi:: ’

18. Prove that the lines joining the midpoints of the ite si i i
kil opposite sides of a quadrilateral bisect

19. Apply Prolemy’s theorem to check that the points (1, ~2), (-2, 1), (4. 7) and (6, 3) are
concyclic. ’

20. Apply Plolemy’s theorem as in problem 19 to the fc ints (-1, ~ -
e e e Ao four points (~1. -5), (1.-1), (2, 1),

Show that (7. 5) divides AB and CD in the same ratio where A is (1, 2):Bis(5.4): Cis

21.
(-5.-Dand Dis (3, 3).

22. 1f G is the centroid of A ABC, prove that

(i) AB*+ BC? + CA*=3(GA? + GB? + GC?)
(ii) OA? + OB* + OC* = GA® + GB* + GC* + 3G0O* i int i
o (where O is any point in the plane

Find the incentre of the triangle whose vertices are (0, 0), (20, 15) and (36. 15).

In AABC, D is the midpoint of BC. Prove that AB® + AC? = 2AD? + 2DC2.

., 1f O is the origin and A, B are the points (x,. y;) and (xs, y,) prove that

OA - OB cos ZAOB = x,x3 + yyyy.

26. ,\. point {’ moves so that its distance from the point (~1. 0) is always three times its
distance from (0, 2). Find the locus of P:

27. fAis(a,0)and Bis (-a, 0) find the locus of P when

(i) PA* - PB? =2/ = constant.
(1) PA + PB = c = constant.
(i) PB*+ PC* = 2PA? where C'is (¢, 0).

BEE

7.2 STRAIGHT LINES

Consider the family of straight lines in the xy-plane. We would like to study this family
of straight lines by means of their equations. A straight line is completely determined
by any two points on it or by its direction and a pownt lying on it.

If astraight line £ makes an angle 8 with the positive x-axis then tan 6 is defined as the
slope of the straight line with respect to the rgctangular axes Ox, Oy. By definition, all
parallel Stéaight lines have same slope. In fact, two straight lines are paralle! if and
only if they have the same slope. All sthaight lines parallel to the x-axis have slope
2zero; and all straight lines parallel’to-the y-axis have slope infinity. The straight line
¥ =xbisecting the angle xOy has slope tan &/4 = 1.
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olutnlﬁlllup-dnﬂhmughmg!venpolnu. A
Let A(x;, yy) and B(x;. ) be the given two points and let p(x', Y) be.an.y point on the
anigh(liine. In the adjoining figure, the triangles BRA and ASP are similar.

’ _x, Y -y,
-A—s:-=£andhcncc Xoh Xoh

BR AR n-% »-n
12

y

N A0 rs
8 X0 IJR

0 h u h_x

o M
Fig. 7.20

4 _y,

Also conversely if (¥’ y') satisfies i‘ :: = ;—:;l then (¢, y') should lie on AB.
(Why?) In other words, the equalionlw the su;ighlzline AB joining the given points
=N

N-x n-»

Note, (1) 1f P is any point on the straight line AB, then the area of the triangle PAB must be zero.
So, if Pis (x, y). then

X=X

A (x;,y)) and B (xy, y;) is given by

0=x(y -y + 002 =) +x0'-y)
‘This implies that  (x—x) (1 = y2) = (% = %) (= x1)

5 X-x _ YN
=% N=R

Also, if area of A PAB = 0 then P lies on the straight line AB. Therefore the equation to the
straight line AB is L= 2L which is in agreement with what we have got already.
X=X h=Nn

(2) P lies on AB if and only if slope of PA = slope of PB = slope of the straight line AB =
tan 6.

Therefore
x5

PS AR
(see Fig. 7.20 and observe that slope of PA = As slope of PB = BR ).

X=X -
Thus ——- = b/ B is the equation to the straight line AB. Incidentally, slope of AB
=2

n=x 5N
=tng= 022
¢ =%
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j Equation of a straight line in terms of the intercepts it makes with the coordinate
axes.

Let L be a straight line making intercepts OA = a and OB = b on the coordinate axes.

In our figure (Fig. 7.21). We have a> 0, 5> 0. If a < 0, the corresponding point A (a, 0)

will be on the negative x-axis. Si ly if b <0 the ing point (0, b) will be

on the negative y-axis. If L makes intercepts a and b on the x and y axes respectively,

then L passes through (a, 0) and (0, b). Therefore the equation to the straight line L is

A(a,0)

Fig. 7.21
x-a_y-0 x y X Y
—=i— o =-l=Zor—42 =
a=0 0= ra bora+b 1.

Note. The equation of the straight line L making intercepts *a’ and *b’ can be directly derived,
without using the 2 point-formula.

Fig. 7.22

Let P (x. y) be any point on AB. and let PM L OX as in Fig. 7.22. The triangles AOB and
AMP are similar.

oM _BP x_PB

OA BA a4 AB

PM AP
and —=I= gives 2 =A—P
BO AB b AB
AP+ PB
Adding we get “l*i?—AB— =1

We have taken P between A and B, the reader may check the validity of the equation in all the
other cases. Thus, equation of the straight line AB is

X ) J
=4 ml,
a
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on AB if and only if the area of the triangle PAB is zero.

Again, P(x, ) lies
0=x(0-b)+ab-y) +00-0)
ie. bx+ay=ab
x.y
Dividingbyab, 7+ =1

Equation of a straight line in terms of its slope and y-intercept
Let L be the straight line with slope m = tan © and passing through C (0, ), in other
words making a y-intercept of ‘c’ on the y-axis. From the right triangle PNC (Fig. 7.23),

e~y . <
"Nm(,_e)=_une=-m=CN/NP, -m= T,y:nu«c-clslhccquanonlo

the straight line L with slope m and y-intercept ‘¢’
One may check the validity of the equation for different positions of P on the line L.

Y
C(0,0)
N R -0\ P (x,y)
N n =
0 M N (@0 x

Fig.7.23

Note. If the above line L meets the x-axis at A (a, 0), then
oe
tan ZOAC =tan(x - 0) =-tan B =-m = o
The line L makes intercepts a = — ¢/m and ¢ with the x and y axes respectively and therefore its
equation is given by
x
~(clm)
Equation of a straight line in terms of the length of the perpendicular from the
origin and the angle which the perpendicular makes with the positive x-axis.
Let the straight line L be at a distance p from
0(0, 0), and let the perpendicular from (0, 0)
make an angle o with Ox (Fig. 7.24). From the
right triangles OAM and OMB we observe that
OA = p sec o and OB = p ccsec 0. Using the
intercept form of a straight line, the equation to
Lis

c 3
—,a=-—.
a m

=1 or y=mx+c.

X 3 X
pseca  pcosec o
=lorxcosa+ysino=p

Fig.7.24
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Fig.7.25

One can easily check that x cos & + y sin & = p is satisfied in all possible positions of

the straight line.
Equation of a straight line passing through the point (x;, y,) and making an angle
@ with the positive x-axis.

Let L be the straight line making an angle 8 such that m = tan 8 and passing through

A (x1, ). From AAQP we getm =tan 8 = % -—:%.n\is in tum implies that the
equation to the straight line Lis y -y, =m (x - x;).

Parametric form of a straight line

Let L be the straight line passing through A(x,, y,) and making an angle 8 with the

positive x-axis. From AAQP of Fig. 7.25 we get cos 0 = cos 6 = %‘? ,sin@= fA% .]f

we denote the algebraic distance AP as r (for points on L on one side of A the algebm-ic
distance is taken as positive and for points on the other side, the algebraic distance is

taken as negative) then

AQ _ PO Ky oY=
Weget c0s8 sin® % Tcos®  sin®

This is the parametric equation of the line L. Any point P on L is of the form (x, + r cos 6,
y; + rsin ) where r is the algebraic distance of P from A(xy, y,.). x=x; + rcos 6,
y =y, + rsin 6 is the parametric equation to L. When one varies r over the real
numbers one gets all the points on the straight line L.

We have now derived equation of a straight line in various different forms like.

(2 point-formula)

2 (intercept form)

3 y=mx+c (Slope-intercept form)

4. xcoso+ysina=p (normal form)

S o y-y=mx-x) (Slope-one point form)
e (Parametric form)

cos®  sin® "
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x=x +rcosB y=y +rsin6.

AlluueequaﬁonsmIineafequuimsinx.yoflhefonnAx+By+ C=0. This
prompts the question:

“Does a linear equation of the form Ax + By + C = 0 always represent a straight
line?"

The answer is yes.

Ax + By + C = 0 always represents a straight line unless A = 8 = 0 in which case ¢
also becomes zero. Let (x;, yy), (X2, 2) and (x3, y3) be any three points on Ax + By + C

"= 0. Then we have
Ax;+ By, +C=0 (1)
Au+ By +C=0 2
Axy+By;+C=0 3

Multiply the equations (1), (2) and (3) by y; - y3, y3 = ¥; and y; -y, respectively and
add the resultant equations to get
AZx(y2-y) + BEyi(y2-y3) + CE(2-y3) =0

But , Zy, (y2-y3) = 0=Z(y, - y3) and therefore we get

Alx (2= y3) + 2203 = y1) + X300 - y2)} = 0. )
If A = 0 then Ax + By + C = 0 becomes By + C = 0 which is the straight line y = - (/B
parallel to the x-axis, provided B # 0. If A =0 =B then C=0. If A #0, then the above
equation (4) implies that £ x; (y, - y3) = 0 which in turn implies that the area of the
triangle formed by (xy, ), (xa, y2) and (x3, y3) is zero. This means that any three points
on Ax + By + C =0 are collinear; in other words Ax + By + C = 0 represents a straight
line.
EXAMPLE 1. Find the equations of the medians of the triangle with vertices at A
(1,2),B(3,4)and C(-2,-5).
SOLUTION. Let A’, B’, C’ be the midpoints of the sides BC, CA, AB respectively.

Then
auBEER S 11
2 2 2 2
s’is(‘““ ﬂ]=(l _EJ
2 "2 272
— Al
CIS( PR )-(2.3)
= -2
Equation to the median AA” is x_] e ‘y—l— which gives on simplification 5x - y
ZEe
2 2

~3=0. Similarly the median BB’ has the equation 1 1x - 7y - 5 = 0 and the median CC’
has the equation 2x — y - 1 = 0. The centroid G of the given triangle is given by

[1+3+(—2) 2+4+(-5)]_(3 1}
3§ 7 3 33

One readily checks that the centroid (% %) lies on all the three medians
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Sx-y-3=0
lHx-7y-5=0
2&-y-1=0.
EXAMPLE 2. Find the equation of the Straight line when the portion of it intercepted
between the axes is divided by the point (3, | ) in the ratio I : 3.

Fig.7.26

SOLUTION. Let t_he ntequind straight line meet the x-axis is at A (a, 0) and meet the y-
axis at B (0, b). It is given that the point C (3, 1) divides AB or BA in the ratio 1 : 3.
Therefore by the section formula, C must be the point :

(l.0+3,a l,b+3,0) (3:1 b) if AC 1
_ == if —=

4 4 4'3) "BT3
) (La+10 l.0+3b)_ a¥»)  pc |
or the point 3 - a 2 ,fa=5
3a b

aln:(T;) givcsa:d.b=4andC(3,l)=(%.%J
gives a =12, b=4/3. Hence the required line is either

x y X y

el s e gl

PRE lor m +U3 1 i.e., either

x+y=4orx+9=12
EXAMPLE 3. Find the distance of the line 3x — y = 0 from the point (4, 1) measured
along a line making an angle of 135° with the x-axis.
SOLUTION. The straight line L throgh (4, 1) making an angle of 135° with the x-axis
is
x-4 =l . x-4

=i
cos135° sin13s® e W=%ﬁ %

(See Fig. 7.27) Any point P on this straight line is of the fonnx=4-r/J2_.y= 1+
/Y2 . Where r is the algebraic distance AP. If this point (4~ r/¥/2 , 1 + r/y/2 ) were to
beon 3x— y=0then 3(4 — rY2 ) - (1 + Y2 ) =0, 11 =4 r/y/2 =22 r. Therefore
r=112y2 = 112 /4 units. Thus the distance of 3x - y = 0 from (4, 1) measured

along L is 11v/2 /4 units.
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EXAMPL! i i i the origin whose
E 4. Find the equations of the straight lines through 1
intercepts between the straight lines 2x + 3y = 12 and 2x + 3y = 15 are each equal to
three. )
SOLIJ'I'IO&AWMQMof(hemﬂMsu-aighlligewbey:mx.“emm;;
10 be determined. The intersection of this with 2x + 3y = 12is

: 15 15m
]andwith2x+3y=15|sQ= TE e

’l‘helequilcmemislhllthedisunoePQ=3.Thismuns

3 Y. 3m Y
9=[——| +
2+3m 2+ 3m

3+43
which leads to m=-4—‘r.
Thus the required lines are
3443 Jieals

y=4xmd)-=4x.

Fig.7.27 Fig.7.28

Angle between straight lines
»

yEmxte yemxte

Fig. 7.29
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Consider two straight lines y = myx + C; and y = myx + . Then the two angles
between these straight lines are supplementary myuTmm%ig, 7.29itis cleﬂﬂ
the two angles between the lwosuuightlinesmez—e, and 1t - (8, - 6,) where 8, and
6, are the angles made by the given lines with the positive x-axis. Therefore we have
an ;= andmn32=mzandﬂlelnglubetweenthcsmlgh(linesmgjvenbylbe
equation

tan 6=+ tan(9 -0,) =+ _fan6 —tan@, =t WM
I+1tan, uno, 1+ mm,

m - m My
T mm, 2 0/thentani6 = 1+ mym, 8ives the acute angle between the two

i S i _m-m
straight lines and if 1+ mym, <0m"me-ﬁmglvalhcnbmseanglebﬁween

the straight lines.

Note. (1) Two straight lines are parallel iff their slopes are equal. The straight line Ax + By + C
=0 has slope — A/B (compare it with y = mx + L‘)lndhence(wostnigm linesAjx+ By + Cy =
0and Axx + By + C; =0 are parallel iff b)/A, = by/A, or equivalently Aj/A; = By/B; in which
case Ay = kA, and B, = kA, forsmnecnnsunlk.‘l’hismku,d,x‘ﬂg+ Cy=0ask(Ax + By
+Cy/k) = 0 which is the same as A x + By + Co/k = 0. Thus any two parallel straight lines can
be putin the form Ax + By + C; =0:ndAx+By&C2=Dsodm(ﬂwydiﬂ‘ermly in the constant
terms.

m —my
1+ mym,

(2) Two straight lines y = myx + C, and y = myx + C, are i if and only if

=tan W2 == which happens if and only if mym, = - 1. Thus two straight lines are perpendicular
if and only if the product of their slopes is ~1. The straight line ax + by + ¢ = 0 has slope — a/b
and hence any straight line perpendicular to it must have slope b/a. Therefore any straight line
perpendicular to ax + by + ¢ = 0 is of the form bx - ay + €’ = 0 for some constant C".
EXAMPLE 3. An equilateral triangle has its centroid at the origin and one side is
x+y = 1. Find the other sides of the triangle.

Fig. 7.30

SOLUTION. Let the vertex not on the line x + y = 1 be A(x,, y;). Let the other two
vertices be B(b, | - b) and C(c, 1 - ¢). Note that we have here used the fact that B and
Clicon1+y= 1. We are given that G is (0, 0). Let AG meet x + y = 1 at D. Since G is
the centroid, we have

b+c+xy=0=1-b+l-c+y (8D}
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But AD L BC (- the trisngle is equilateral). . ‘m’ of AD X ‘m’of BC =~

-?- x (1) =— 1 so that y; = x;.
mﬁtlh(l)wzﬂb-rc: l.mﬁm::l—b.mmmymmo‘
the triangle are A(x), x;), B(b, 1 - b) and C(1 - b, b). Again equation (1) gives x; + b
+1-b=0, which means x, =-1. Hence A is (=1, -1).
Now equation to AC is
b+1
y+l= 2—_5(x+ 1

ie.

which reduces to
=b+1x+2b-l @
2-b 2-b
Similarly, equation to AB is
ya2zb, 1o @
b+1 b+l

Nowwehveon]ymﬁndb.WehwwACandBkaeananglco{éO‘.So

1+(H)(-|)

=

This gives, b=~ )/% Since this gives a positive value for the ‘m’ of AC (check !),

we accept this value and do not proceed with —3 on the L.H.S. of (*). Substituting
the value of b in (2) and (3) we get the required lines.
EXAMPLE 6. If the image of the point (hy, k;) with respect to the line ax + by + ¢ =
0 is the point (hy, ky) then show that

b -h _k -k e (ah, + bk, +¢)

a b a’+b

SOLUTION. As Q (hs. ky) is the image of P(x,, y;) with respect to the line ax + by +
¢ =0 we must have PQ perpendicular to ax + by + ¢ = 0 and PR = RQ (see Fig. 7 31)
where R is the point of intersection of PQ with the straight line ax + by + ¢ = 0.

Slope PQ x Slope (ax + by +¢) = -1
ie., i‘:—:‘-x% =~

—k, sy
This implies that 5,,;&5“—"‘ = A (say).
Then h, = h; + ak and k, = k; + b This gives the midpoint R of PQ as

(h, +h +ak k +k +bl)
2 . 2 ¥
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P(hy, ky)

Fig.7.31

; ,ksmm(%,ﬂlg_“)_
Now R lies on ax + by + ¢ = 0 gives

2h +ak) (2
O

(@ + B)h =~2ah, + bk, +¢)
i -y TR )
a +b
h-hb _k -k ahy +bk, +c
Thes a b = a’#til .
Equation of a family of straight lines passing through the intersection of two

Consider two straight lines L, = a,x + byy + ¢ = 0. Ly ® axx + byy + ¢; = 0 intersecting
atapoint P (h, k). Now
L;oXL;z(a,:‘b,'|>4c,)+l(a;:+b,_v+c;)=¢.) *)
is again a linear equation, namely
(@ +ha)x+ (b +Ab)y+(c;+Acy)=0

and hence is also a straight line. Further the point (h, k) satisfies (ah + bk + ¢)) + A
(o,_llvb:tﬂ';)=0+A.0=O.Mm.(')isamigh|linepusingdnwgmhepoinl
of intersection of L, and L,. Conversely, suppose.L is any straight line passing through
the point of intersection of L, and L. Let px + gv + r = 0 be the straight line L.

Then L can be written as y - k = m(x - h) where m is its slope. Solving a\h + bk + ¢,
=0.a5t + byk + ¢, = 0 we get

b -bigy andk= 229G

h=

abe—ah " a ek
_%q-aq =m(,_f'r2__b’£’.J is the equation of L.
ab, - ayb, aby - azby .
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Simplifying we get m (ayb; — azby) x - y (@by — azby) + (ax¢, ~aic) = m (b2 - bycy)
=0ie.(a; +mby) (@ix+by+c))-(a +mb) (@xx + by + ¢2) = 0 which is of the form

ax+by+c+h(@ax+by+c)=0
a, +mb,
where A=_——az+mb,

Nou_WhﬂlwvuylinL,#l.l,,so‘vcmlbeflmilyo{stnighlIinapastingzhmushug
intersection of Ly, =0 and L, = 0.
7,77|¢¢quaiaaaﬂhe:id¢sajalriangltmex+2)':0, 4x+3y=5and
3x 4y = 0. Find the orthocentre of the triangle.
SOLUTION. Let AB be x + 2y = 0, BC be 4x + 3y = 5 and CA be 3x + y = 0. The
slope of BC is — 4/3 and therefore the slope of AD is 3/4. Hence the equation 1o AD is
k-Ay:O.SinzihrlyoneﬁndsﬂmllmnllimdeBEmuslbeoflhe formx + 2y + A (4x
+3y-5)=00r(1+44)x+((2+34) y-5r=0.

A(0,0), E

Fig. 7.32

1+40
-1 = (Slope of BE) (Slope of CA) = -[m] (=3)0r 31 +4A) =~ (2 + 3A).

This gives A =— 1/3 or BE is given by x -3y - 5=0.

The orthocentre H of A ABC is got by solving 3x -4y =0, x - 3y = 5. We get H as
(-4,-3).

EXAMPLE 8. Prove that the diagonals of the parallelogram formed by the lines ax +
by+c=0,ax+by+c’=0,a%+bYy+c=0,ax+b’y+c’=0will be at right angles
ifa + ¥ =a”+b%

SOLUTION. Now the diagonal AC is of the form ax + by + c + A (a'x + b’y + c) =0
as it passes through the intersection of ax + by + c=0and a’x + b’y + ¢’ = 0 (Fig. 7.33).

%
SlopeofAC=—[ J

Similarly, the diagonal Ac is also of the form (ax + by + ) + p (a’x + b’y + " = 0).
Thus AC is givenby (a+ A a’)x+ (b+Ab)y+ (1 +A)c=0and (a+pa’)x
+(+pb)y+(+p)c’=0.
a+da’ b+ _(1+h)c
a+pa’ b+pb’ (1+p)c
Md'b - ab’) = w(a’b - ab’)

We must have
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. i cos(a, — 05)
Equation to AD is U, - cox@, ~ @)U, =0
or equivalently U, cos(0 — a;) = U cos(0t, — ).

Similarly the altidude BE is Us cos (0 — 03) = U cos (o = 03).
The orthocentre is given by
Uy cos(@a — a3) = U cos(a - o) = Uy cos(0t; — ).
To find the necessary and sufficient condition that the three linesa;x +b;y +¢;=0,
i=1,2,3 may be concurrent.
Solving ayx+byy+cy=0and ayx + by +¢; =0

be, —b G4, — 64
We get L -
$ ab, - azby % ab, - azhy

Now this point lies on the third line axx + by + ¢3 = 0iff

ay [bx"z -b¢ ]+b1["|”1 =G4 ) +c3=0
ab, - azb, apb, - azby

or  ay(bicy—byey) + by (€103 - c2a) + €5 (ayhy — azhy) = 0
See chapter 8 for a standard way of arriving at this equation.
Another necessary and sufficient condition for the above three lines to be
concurrent is the following; viz., There exist three constants k, ky, k3 not all zero
such that k, (@,x + byy + ¢;) + ky (@xx + byy + ¢3) + k3 (ayx + by + ¢3) is identially
zero.
Proof. Suppose there exist k;, ks, k3 not all zero such that k; (ayx + byy +¢)) + k; (azx
+ byy + €2) + k3 (@3x + byy + ¢;) = 0. We may assume that k; # 0. Then the above
condition gives

kylks (@yx + byy + ¢)) + kalks (@px + boy + ¢3) + asx by + c3=0 ()
If (h, k) is the point of intersection of a,x + byy + ¢; = 0 and ax + by + ¢; = 0,
substituting in (1) we see that azh + bak + 3 = 0. Hence (h, k) lies on the third line ayx
+ byy + ¢3 = 0. In other words the three line are concurrent.

Conversely, if the three lines are concurrent, we can write asx + by + ¢3 =0 in the
form (ayx - byy + ¢;) + A (ayx + byy + ¢3) = 0 for some constant A. This means that as
ay=k(a +1ay),

by=k (by + A by) c3=k (c; + A ¢3) for some constant k. Therefore, we get

1
ax+ by + ¢+ Mayx+ by +¢3) - Tap + by +¢3)=0
D=7 3

The proof is now complete. |
EXAMPLE 10.Show that the straight lines 2x + 7y + 27 = 0, 5x + 13y - 17 = O and
12x + 33y - 7 = 0 are concurrent.

SOLUTION. We note that (2x + 7y + 27) + 2(5x + 13y - 17) - (12x + 33y - 7) = 0.
Hence the three straight lines are concurrent.

To find the ratio in which the straight line ax + by + ¢ = 0 divides the line joining
(xp, 31) and (x3, y2).

ax+by+o =0

ax+by+c =,
ax+by+d=0

Fig.7.33

1+A
1+1 5"

&
Now E:;(Why?)andlnnoel=u1‘hismunsﬂwl=

Butc#c' (why?)and hence A=~ 1. Thus A, =k=- 1.
Therefore cqualic’m 0 ACis (@a-a’) x+(b-b") y = 0. Similarly equation to BD is
(,+a');+(b+b)_v+c+r'=0A(llisusilyobservedrhn{axd»bw-c)-(dx-bb’y
+¢)=0 passes through A and C; and (ax + by + ¢) + (’x + b’y + ¢) = 0 passes through
Band D).

Now AC is perpendicular to BD if and only if the product of their slopes is — 1;
which happens iff

a-a a+a’
“h_b )| " hep | =-) orsimplifying a® + b= a + b7

Remark. If the sides of parallelogram are L; = ax+ by +c =0, Ly =a’x + b’y + ¢ =0,
Ly=ax+by+c’ =0and Ly=a’x+ b’y + ¢’ =0, the diagonals are given by L, - L, =0
and L, + Ly =0.
EXAMPLE 9. The sides of a triangle are U, s x cos ar + ysinar-p, = 0
Jorr=1,2,3. . .
Show that its orthocentre is given by

U, cos (at; - ay) = U, cos (@3 — ay) = U; cos (@) — @),
SOLUTION. Let  BCbe U; =xcos & +y sin & = p; =0y,

CAbe Uy =0and AB be Uy = 0.

Then the altitude AD through A is of the form U, + A U; = (x cos 0 + y sin 0 — py) +
A (xcos 3 + y sin a3) — py = 0 i.e., AD is given by (cos 0 + A cos @3) x + (sin 0 + A
Sin @) y - (py+ A py) =0.
€OS 0ty + A cos oty

~ — Now AD L BC gives
sin @, + A sin oy

Slope of AD =~

cos 0, + A cosay (eatay==1
sina, +Asina;

-or cos 01,(c0s 0t + A COS @3) + sin @ (sin & + A sin 0g) =0,

This gives  (cos @ cos 0z + Sin € Sin 0 + A(COS & €OS 03 + sin @ sin 0) =0
cos(a, ~ ;)

or i A=-
equivalents -A cos(es ).
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Suppose the straight line joining A(x; 1) and B(x; y,) meets ax + by+c=0at P(x, y).

AP
25 =
Let g
Then P has coordinates,
Moty An+y
S B

Bx.yy)

P ax+by+tc=0
Fig.7.34

Pliesonax+by+c=0givesa(Axa+x)+b(Ays+y) +c(A+1)=0
or Max, + byy + ¢) == (ax; + by, +¢).
ax; +by, +c
ax, +by, +¢
Remark. The above ratio is positive if and only if A and B are on the opposite sides of
ax+ by + ¢ = 0. Therefore A(x, y;) and B(x, y,) are on the same side of ax + by+c=0
ifand only if ax; + by, + ¢ and ax, + by, + ¢ have the same sign.

EXAMPLE 11. Show that the origin is within the triangle whose vertices are A(2, 1),.
B(3,-2)and C(-4, - 1).
SOLUTION. We have the sides BC, CA, AB having the equations

A=- - This is the required ratio.

Fig. 7.35

x+Ty+11=0,x-3y+1=0,3x+y-7=0
respectively. Now (0, 0) will be within the A ABC if and only if (0, 0) and A are on the
same side of BC; (0, 0) and B are on the same side of CA; (0, 0) and C are on the same
side of AB.
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(0, 0) and A arc on the snmcsideoI’Bthoseequnionisx'*- 7y + 11 = 0 since
24+47+11=20>0and0+7(0)+ 11 =11 > 0 are of the same sign.
Similu'ly.Bmd(0.0)monmesamesideofabecause'J-S(—ZH 1=10>0and
0-3(0)+1=1>0. ﬁmlly,subsdtnﬁngxhemdinamofCln 3x+_y—7_w¢_: get3(-4)
+(- 1)-7=-20<0;also 3(0) + (0)-7=-7<0. Hence (0, 0) lies within A ABC.
Alternately we can do the above example as follows.
EqmﬂonwOAisy:xrzorx-zy:o. )
Substituting the coordinats of B(3. - 2) and C(- 4, - 1) in the equation to OA_ we(sec
ﬂm3-2(—2)=7>0|nd-4—2(—l)=—2<0.SoBand Camonlhcoppo_sne sides
" of OA. This means that O(0, 0) lies within ither the region 1. 4 or 7 (Fig. 7.35).
Similarly C and A are on the opposite sides of OB. Again this means lh.al 0 I|ch wiﬂ!in
the region either 2, 5 or 7. Hence O (0, 0) lies within the region 7; i.e., O lies with
AABC.
To find the length of the perpendicular from the origin to the straight line
ax+by+c=0.
If ON is the perpendicular from O on ax + by + ¢ = 0 then the straight line ON may
be put in the normal form x cos & + y sin a = p where p = |OM (Fig. 7.36).

¥y

Ol ax+by=c=0 x
Fig.7.36
Now ax + by + ¢ =0 ind x cos & + y sin & = p represent the same straight line
implies that
& ¢

= .
cosa sina (-p)

c
Eliminating @ using cos? & + sin? o= | we get p =+ ——s .
a” +b

Ja? +6?

- c
Note. If c<Oinar+by+c=0,thenp= —=== andif c >0 then p = ———=
Va? +? a® +b

Thus the length of the perpendicular from the origin is p =

SHIFTING OF ORIGIN

Suppose we fix a Cartesian frame of reference OX, OY and A is a point with coordinates
(x, y1)- Consider a new pair of axes AX", AY” through A parallel to the original axes
OX, OY-respectively (Fig. 7.37).
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Y
y
Npp-==-=- [T »
:
Ay (M
:
C
looy 1 M 3
Fig. 7.37

With respect to lh:{ new axes, whose origin now is A, the coordinates of A are (0, 0).
Let P be any point in the plane whose coordinates are P(x, ¥)and P(¥', y’) with respect
1o OX, OY and AX", AY" axes respectively. Then we have OM =x, AM’ = ¥/, ON=y, AN’
=)/ (see Fig. 7.37 for the explanation of the symbols M, M’ etc. We observe that
OM=x=x;+x and ON=y =y, +y’. Thus the transformation equations from the old
set of axes to the new set of axes are x’ =x-x,y =y-y.

For example, if we shift the origin to (- 1, 3) with the axes remaining parallel, the
transformation equations are ¥’ = x - (= 1) =x+ 1, " = y - 3. This means that if P is
(3.-2) with respect to the old axes, then Pis (3 + 1,-2-3) = (4, - 5) with respect to
the new axes.

To find the perpendicular distance of A(x,, y,) from ax + by + ¢ = 0:

Shifting the origin 10 A(x,, y|) with the axes remaining parallel, the equation to the

given line becomes a(x’ + x;) + b(y’ + y;) + c =0 or ax’ + by’ + (ax, + by, + ¢) =0, with

respect 1o the new axes. A is the origin of the new axes and hence the perpendicular
lax, +by, +cl

distance of A from ax’ + by’ + (ax; + by, +¢)=0is 2
’ T

a” +b
EXAMPLE 12. Find the locus of a point which moves such that the sum of the
perpendicular distances from it on two given straight lines is a constant.
SOLUTION. We may take one of the two given straight lines to be our x-axis and the
point of intersection of the given lines as our origin. Observe that we have the freedom
of choosing our axes, depending on the problem. (Reader, this is where we intelligently
exploit the convenience of coordinate geometry). By our choice of the axes one of the
given lines is v = 0 and let the other be mx — y = 0. If P (', ) is the variable point, its
distances

Imx’ - y'I
from the two given lines are Iyl and #{

yi+m

We are given that P moves such that Iyl + ?’“‘T',' =k= constant.

. Thelocusof pis f1+m’ |yl +Imx—yl=k 1+m® .
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Fig.7.38

In region / where y > 0, mx > y the locus is the straight line mx +

(,/l-'rmz—l)y—k\jl+mz = 0. In region II where y > 0, mx < y the locus is the
straight line (1 + 1+m2)y—mx=k‘ll+mzJnrcgionlll,whcre_v<0.nu<,vlhe
locus is the straight line (1 - (1 - 1+m® )y-mx=ky 1+m? . Inregion IV, the locus

ismx—(1+ J1+m’ )y=l:‘|'1'+m2 «
EXAMPLE 13. Find the incentre of the triangle whose sides have the equations
x+y-7=0, x-y+1=0 and x-3y+5=0.
SOLUTION. Let 7 (x;, ;) be the incentre of A ABC whose sides have the given
. . . TS T
equations. Then the perpendicular distance of / from BC is = ——J—z——

B x+y-7=0 c
Fig. 7.39

From Fig. 7.39, it is clear that (0, 0) and / are on the opposite sides of BC. Hence x| +
»n-7>0.

x+y-7
. o %.Simihﬂyd\edisﬂnceoflfmmc,hs

_ Ix,+y,+l|=_(x,—y| +1)
R V2
since O and / are on the opposite sides of x - y + 1 = 0. The distance of / from AB is
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1 (b, - ab, )

3 in? I N
2 sinfa= :Ex:h)z-pl (a.2+b|2)(a§+b,’).
oh ~ady
_bp
Area of parallelogram ABCD = SiG

lab, - azhy|
EXAMPLE 15. The straight line Ix + my + n = 0 bisects an angle berween a pair of
lines of which px + qy + r = 0 is one. Find the other line.

Fig. 7.41

SOLUTION. The required line is of the form (px + gy + 1) + k (lx + my +n) = 0. For
any point P(¥', ') on the bisector [x + my + n = 0, we must have PA = PB (Fig. 7.41).

Ipx’ +qy’ +rl _ \px’ +qy +rl
P +q (p + kD) + (g + km)?
This implies that p? + ¢* = (p + kI)? + (g + km)?
s PBem) IR+ 2pl+gm) k=0

(Since IX + my’ + n=0)

Hence k=00rk=-2M
F+m
Here k0 (Why?) and hcncek=42‘—;’zl—:LT)
m
This gives the required line as
px+qy+r-2 M (x+my+n)=0
" +m*
or (2 +m?) (px + qy + 1) = 2(pl + gm) (Lx + my + n) = 0.

Remark. Consider two straight lines a,x + b,y + ¢, = 0, ax + byy + ¢ = 0. Any point
on a bisector (internal or external) of the angle between this pair of lines is equidistant
from the two lines. Hence the bisectors have the equation
ax+by+e -4 @xthy+e
a,z + b,2 ‘]af +b3.

EXAMPLE 16. Show that the internal bisectors of the angles of a triangle are
concurrent.
SOLUTION. Let the three sides be /; =ax + by +¢;=0,j = 1,2, 3. There is no loss
in generality in assuming that (0, 0) lies within the triangle. In fact, we may choose
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Iy -3y, +51_x -3y +5
r= = 1
Jl+9 :;m .

si,,uogmdla:eonlhesamcsideofAB(Flg.739).
GEn-7_ (x-y, +)_x-3y,+5

Th . r= =—
us 7—— JE :

3 > 3
which leads to n=3y=1+45.

- Theincentreis 3,1+ V5).
EXAMPLE 14. Prove that the area of a parallelo, i i
1 gram is p,p/sin @ where p,, and,
are the distances between the parallel sides and a is any an’:l):oﬂh: paml,l,e'logmf:
Hence prove that the area of the parallelogram formed byayx + by +c;=0,ax+ by
+d;=0,ax+by+c;=0.ax+by+dy=0is

d, -¢;)(dy ~c,)
(a, ~apy) |

Fig. 7.40
SOLUTION. We have, area of the parallelogram ABCD =AB . p, . p, (From A ABM)
=(py/sin (180 — a))

Thus area of parallelogram ABCD = (p; p,)/sin c.

LetABbeayx+ by +¢, =0, BCbe ayx + bay + ¢, =0, CAbe ayx + byy +d, =0, and
DA be a,x + byy + d» = 0. Then the distance between the parallel lines a,x + by + ¢; =
Oand ax + by + d; = 0 is given by

lo,-dy) ley —dy |
. Similarly p, =
+b} ;]nf +b]
Lo B
1+ mm,

The acute angle between AB and BC is given by tan™ where m,, m; are the

slopes of AB, BC.

_(ahy —aby)’
(b, +aya;)*
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any point inside the triangle as our origin and assume
R 1,23, We may alsom'nemq)Qfmmjnnuidumbel,-a,ub;VHJ

0,0

B ax+by+e =0 C

Fig. 7.42
For any point P on the internal bisector of ZA, lying within A ABC, the origin and P
are on the same side of AB, AC. Hence if Pis (¥', ') we have either ayx’ + by’ + ¢, and
ay’ + by’ + c3 both positive or both negative (note that by our choice ¢;, ¢, 3 are all
positive). Thus the internal bisector of ZA is

ax+by+c, _ax+by+c,
vas +b; Vai +b?

Similarly the other internal bisectors are GETRy e exibyve .

a} +b] a] +b}
ax+hy+c _ax+
vai +b} yai +b3

2 I, 1
In other words, the internal bisectors are . -=t—=0
;]af +b}  Jai+b?
Iy 1. 1.
= e 20, e - ﬁ =0
s yai+b ;}a§+b§ af +b)

where [, = a,x + b,y + ¢, forj = 1, 2, 3. Now adding the three equations we get

z I, = 1y =0
vai +b} ,/a:: +b3

and hence the three internal bisectors are concurrent.
EXAMPLE 17. Find the value of a for which the three lines
2+ y~1=0 ax+3y-3 =0 3x + 2y -2 = 0are concurrent.
SQL[’TI()N. Solving 2x +y — 1 =0 and 3x + 2y - 2=0, we get the point (0,1) as the
point of intersection. Now, whatever be ‘a’ (0,1) always lies on ax + 3y - 3 = 0. Hence
the three lines are concurrent for all values of a. .
EXAMPLE 18. If the lines x + 2y = 9, 3x~ Sy = 5, ax+ by = I are concurrent then
Prove that 5x + 2y = | passes through (a, b).
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Solving x + 2y =9 and 3x -5y =5 we get the point (5, 2). If ax + by = | passes
mmugh(S.2)men5a+2b=1.Thismeans|lul5x+2y=lpassammugh(a.b),
EXAMPLE 19. Prove that (a + b)x—aby = ¢ (@ + ab + b?), (b + c)x=bcy =a (b +
be + &), (¢ +a) x - cay = b(c? +ca + a®) are concurrent.

SOLUTION. We note that
5 2(a-b) {(a+bx-aby-c(@+ab+b?) )

+a(b-c) [ (b+)x-bey—a B +bc+ D)
+b2(c-a) { (c +a)x—cay - b(c* +ca +a’))
=(zt2(a‘2-bl))l—abc(zt(a—b)),v-E(a’—b’)
=0 (identically zero).
Hence the three lines are concurrent.
EXAMPLE 20. Find the equations of the diagonals formed by the lines 2x —y + 7 =
0,2x-y-5=03x+2y-5=0and3x +2y +4=0.

D/ 2-y-5=0 /C

I +2p+4=0 3x+2y-5=0

Fig.7.43

SOLUTION. Equation to AC must be of both the forms
) 2 -y+T+M3x+2y+4)=0and
2x—-y-5+p(3x+2y -5)=0.
T 2430 _-1420_ 7+4h

This gives 2430 -1424 -5-5u
2+ _-1+2) ives A =
2+3u —l+2],tg #

T+4h==5-5horA=-(4/3)

Hence equation to AC is
2x-y+7-(4/3)(Bx+2y+4)=0o0r
6x+1ly-5=0

Similarly BD is of both the forms

2-y+T7+k(3x+2y-5)=0

2x-y=5+13x+2y +4)=0.

243k _-1+2k _ 7-5k

2430 1421 -5+41

This gives
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Again, these equations give k= 1and 7~ 5k =~ 5 + 4k or k = (4/3).
Equation to BDis 2x -y + 7 + @13)(3x+2y-5)=0

or 18x+ 5y +1=0.

Thus the diagonals have the equations 6x + 11y - 5= 0, 18x + Sy + 1 = 0.

EXAMPLE _21'4 straight line moves so that the sum of the reciprocals of its intercepts

on the coordinate axes is constant. Show that it passes through a fixed point.

SOLUTION. Let the variable line be X + . = 1.
a b

Then we are given that £ + % =K =a constant.
3 2
Therefore, the variable line takes the form

x 1
—+[k——)y-l=0 or
a a

1 . i . =

;_(,_yn»(l(y—l )=0. nnsmpmentsasumghtljnenmmughmeinmsecﬁon of

x-y=0and Ky - 1 = 0. They intersect at (VK, VK) and hence = +2. = | always
a b

. 11
ses through the fixed point (—,— %
pas poi 'K

EXAMPLE 22. ABCD is a variable rectangle having its sides parallel to fixed
directions. The vertices B and D lie on x = a and x = - a and A lies on the line y = 0.
Find the locus of C.

Fig. 7.44

SOLUTION. Let A be (x;, 0), B be (a, y;) and D be (- a, y,). We are given AB and AD
have fixed directions and hence their slopes are constants, say m, and m,.

_lL.=m|.and /] =my.
a-x == Xl
Further m;m, = — | since ABCD is a rectangle.
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. 1
—Lamllnd Y
a-x —a-x, m

o (o Yatye)o "l“".i]
'l'heum#omlofBDls(0.—-3———2 52
= midpoint of AC where C is taken to be (x. y).
x=-xjandy =y, +ys. S0 Cis (= X1, y2 + ¥a)-

This gives
. 1
Y2 oy and —2 — gives
Al a-x m at+x L £
the locus of C as

(m = Dx+myy=(m +1).
EXAMPLE 23. Each side of a square is of length 6 units and the centre of the square
is (- 1, 2). One of its diagonals is parallel to x + y = 0. Find the coordinates of the
vertices of the square.
SOLUTION. Let ABCD be the given square with centre (- 1, 2) and side of length 6.
BD is parallel to x + y = 0. Equation to BD is x + y = 1. Hence the equation to AC is
x-y+3=0(note that AC L BD).

We have |0C1 =108 = [0AI = 10DI = 32 units.
C
|
-1,2) [
A B
Fig. 7.45
x=(CN_ y-2

= r where r is the algebraic distance of (x, y)

‘We may write AC =
SRR RS cos45°  sin45°

from (- 1. 2). Therefore A and C are given by

+1 -2 .
:IT=)I'I 3 =£3J2 orAis (2, 5)and Cis (- 4, - 1). Again, we may

write BD as

~

x+1 y-

-2 W2
B and D are given by 17;‘2-=;—‘};-=t3\/5

=r.

Bis(-4,5)and Dis (2, - 1).
The vertices of the square are (2, 5), (- 4, 5), (-4, 1) and (2, - 1).
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1. Find the slopes and the intercepts upon the axes of the following lines and reduce each to

normal form.

() 3x-4y+12=0
(iii) 15x-8y+34=0
o) x-y=8
2. Write the following straight lines in the parametric form
(x=x))/ cos®=(y—-y))/sin@=r.
(i) through (2, 3) with slope 2
(i) through (1, 4) with slope - 1/3
(iif) through (1, 3) and (4, 2).
Find the equations to the straight lines which join the origin and the points of trisection
of the portion of the line x + 3y - 12 = 0 intercepted between the coordinate axes.
If (xy. ¥1.) 18 the midpoint of the portion of a straight line intercepted between the coordinate
axes, prove that the equation of the line is x/2x, + y/2y, = L.
Find the equations of the straight lines through the origin whose intercepts between the
lines Sx + 12y = 15 and 5x + 12y = 30 are each equal to three.
Show that the lines 3x + y +4 =0, 3x + 4y - 15 =0 and 24x - 7y -3 = 0 form an isosceles
triangle.
Find the arca of the triangle formed by the lines 2x -y +4=0,3x+2y-5=0,x+y+1
=0
Straight lines are drawn from A (3, 2) to meet the line 6x + 7y = 30 and these straight lines
are bisected. Find the locus of the midpoints.
Find the area of the triangle formed by the lines y = mx + ¢}, y = myx + c; and x = 0.
0. Find the acute angle between 3x -2y +3=0and 2x+y-5=0.
11. Find the equations of the lines through (2, 3) which make 45° with 3x —y + 5=0.
If (h. k) is the foot of the perpendicular from (x,. y;) to the straight line Lx + my + n =0,
show that (& —x, M1 = (k =y )im (Lx; + myy + ) (B + m?).
. A vertex of an equilateral triangle is at (2. 3) and the opposite side is x + y = 2. Find the
equations to the other sides of the triangle.
A triangle is formed by the lines ax + by + ¢ =0, [x + my + n =0, px + qy + r =0. Show
that (ax + by + ¢) / (ap + bg) = (It + my + n) / (Ip + mq) passes through the orthocentre.
Show that the origin is within the triangle formed by the lines 4x + 7y + 19 = 0,4x+y
~1l=0and4x-5v+7=0. :
Find the in radius of the triangle formed by the lines x=0, y =0 and x/3 + y/4 = 1.
. Show that the following pair of equati the same family of straight lines
2v4+ 3y - 8 + Adx - Ty + 10)=0and 3x + 4y - L] +v(2c -5y +8) =0.
18. Write down the equations of the bisectors of the anglc's between the lines.
() x+2y+3=0and2x-y-5=0 (i) 4x+3y+ 10=0and 12x- 5y +2=0.
19. Prove that x + y + 2=0, x— 7y =2, and 6x + 8y + 13=0, 2y + | =0 have the same angular
bisectors.

20, Find the directions in which a straight line must be drawn through (1, 2) so that its point

(if) 12x+Sy=39
(iv) 11x+60y =61

w

-

L)

E

o)

*®

b

»

=

=

&

'

3

of intersection with x + y = 4 may be at a distance (1/3) J6 from the point.
21. Show that 2x -3y +5=0, 3x + 4y -7 =0and 9x - Sy + 8 = 0 are concurrent.



7.3 CIRCLES

The equation to the circle with cen
point P(x, y) lying on the circle satis

tre origin and radius 7 is x* + y* = /%, In fact
fies OP?=Por 2 +y* =1 w

Conversely, if 2 + y? = /* then (, ) lies on the circle. If the centre is (a, b) insteaq:

of (0, 0) then the equation to the circle with centre (a, b) and radius1r is (x-qp
+(y - b)? = % In general, the equation to any circle is of the form x? + Y +2gx424
+ ¢ =0, We have already seen that the circle with centre (a, b) and radius r has the
equation
(x-a)‘#(y-b)2=rloul+yz—2ax—2by+a’+b2—rl=0

which is of the above mentioned form. Conversely, consider the set of points (x, y)
satisfying X2 + y2 + 2 gx + 2 fy + ¢ = 0. We may write this equation in the form (x + g)2
+(+fR+(c—g2—fH=00r (x-g) + (y+f)*=g? +f? - c which is the equation to

the circle with centre (- g, —f) and radius y/(g® + f* ~¢) whenever g + f2 ¢ 20,

Thus we have
Proposition 1.2 + )7 + 2 gx + 2fy + ¢ = 0 represents a circle whenever g* + /7 ~c =
and any circle can be put in the form x> + y* + 2 gx +2 fy + ¢ = 0. In fact (- g, — f) is the

centre and ‘)(gz + f*=c¢) is the radius. Preposition | says that the general second
degree equation ax? + 2 hxy + by? + 2 gx + 2 fy + ¢ =0 is acircle if and only a = b and
h=0.

Some immediate observations

1. A circle is a second degree curve.

2. In the general circle x2 + y? + 2 gx + 2 fy + ¢ = 0 there are three independent
constants g, fand c. Any three independent conditions enable us to fix g. £, ¢ and
hence the circle. In particular any three non-collinear points determine a circle.
A straight line is given by a linear equation of the form ax + by + d =0 and a
circle has the second degree equation x° + y? + 2gx + 2fy + ¢ = 0. Therefore if we
solve ax + by + d = 0 and x* + y? + 2gx + 2fy + ¢ = 0 we have (i) two distinct
points of intersection or (i) two coincident points of intersection or (iii) two
imaginary points of intersection. In other words a straight line either cuts a circle
at two distinct points or touches a circle at two coincident points or never meets
the circle at all. When the two points of intersection are coincident, the straight
line is a tangent to the circle.

Twocircles §; =27 + 2+ 2g1x + 2fiy + ¢, =0and $, = 22 + 2 + 2g5x + 2oy + ¢
= 0 intersect in general at two points. The points of intersection satisty both
$;=0, 5, =0 and hence <
S1-8=2(8 - g)x+2fi - )y +¢; -, =0,

This is a straight line which becomes the common chord when the two circles intersect.
Note In general two quadratic curves

@ +2hyxy +by? +2 g1x + 2y + ¢, = 0 and

ay + 2haxy + by + 2850 + Ay + ¢ =0
have four points in common ! (as seen in algebra).

w

b
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5. A point P(xy, y1,) lies inside circle, on the circle, outside the circle x? + y2 + 2gx

4'Z,I'y"-C=01‘““"“”"8“5}=X|24'.V|2 +2gx; +2fy), +¢;<0,8,=00r S, >0.
In particular, the origin lies within x* + 2 + 2gx + 2fy + ¢ = 0 if and only if ¢ < 0.
Proposition 2. The length of the tangent from (x;, ;) to the circle x2 + y* + 2gx + 2fy

Le=0is {0 + 07 +285 426 +0).

Py

Fig. 7.46

Proof. Let P be (x;, ¥,) and PT be a tangent from P to the circle x2 + y* + 2gx + 2y +
¢ =0. Then AOTP is a right angled triangle and PT? = OP? - OT? = OP? - (radius)?
=+l + On +P- (g2 +f2-0)
=x,z+y,2 +2gx; +2fy, +c. a
Definition. The power of P(x, y,) with respect to the circle
P43 +20x+ 2 +c=0isOPP = Pie., X +y] +2x,+ 2 +c.
Proposition 3. The tangent at (x,, y)) to the circle x* + % + 2gx + 2fy + ¢ =0
has the equation xx; + yy; + g(x +x) +Ay + y) +c=0.
Proof. The centre O has coordinates (- g, - f) and hence the slope of the radius OP is

n+f . For a circle, the tangent at P is perpendicular to the radius OP and hence the
n+g

nte
tangent at P(x), y,) has the slope - ——.
n+f
Therefore, the equation to the tangent at P is
n+e
-y = (X=X}
¥=n WS ( 0
ie., O=y) G +N+(x+8 (x-x)=0
ie, XX+ Yy H g +fy= XY g

Adding gx, + fy, + ¢ we get
X+ 3y, +gx+x) +fy+y) +c=5=0
(where §, = xj + y{ + 2gx, +2fy, + ¢) since (x;, y)) lies on the circle.
Thus the tangent at P (x,, y;) to x* + y* + 2gx + 2fy + ¢ =0is
xx +yn+ g +x) +fly+ ) +¢c=0.
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Note. By definit Pis the limiting of the chord QP when Q approache
Ponl!.:‘ an(x,.yz)buneigwwrincpoimmr(x..y..)mn:cuch.mmw
OP bas the equation

=% =8 o

n-y n-%
AhoP.Q-epoilxmvbdmhgivu

4yl +2gn 2 +e=0= 5 +3] +2en e Unte
-+ (] - ¥3) + 2800 - 1) + 2 -3 =0
o« (y-1) (q +X7 +20) == 01 =3) 01 #3242
- + X, +2,

= =% . Stntis &

Xy=%3 n+y, +2f
“This makes (1)as y—y, =~ Ml_g (x=-x) 3)

Nty +2f
AsQ— P, x; > x and y; —vy,mdtbechotdQPbeoormdmung:malP.Thﬂtfmfrm(J)
we get the tangent at P

X, 128 -
as yoHimemg +2/¢' x)
n+g
i -y =— (x=-x).
ie., y=n Ewer (x - x).

As seen earlier, this may be rewritten as xx; + yy; + 8(x + X)) #fly +y1) + ¢ =0
Proposition 4. The straight line y = mx + ¢ is a tangent to the circle x* + = a” if and
only if & =a? (1 +m?).

Proof. Solving y = mx + ¢ with * + )* = a® algebraically, we get the quadratic equation
2+(mx+cP=aor(l +md) 2 +2mex+ 2 -a*=0.

This quadratic equation has equal roots if and only if its discriminant is zero: in
other words m?c = (1 + m?) (¢ - @®) or & = @* (1 + m?). Hence y = mx + c is a tangent
P +y=aiff =d(1+m). 2
Corollary The point of contact of the tangent y = mx + ¢ with the circle

x2+y7=n2is(—a:m‘£].

c
Proof. As in the proof of the proposition the equal roots for x satisfy (1 + m?)x + 2m
cx+ 2 -a?=0with & = a1+ m?).

-mc _-a’m
oo x= 7 =
1+m e
-a‘m a*
This gives the point of contact as —
c c

(_"‘L ;] an__-a
=la+m) a+md) ) "\ T U

according as c =+ a y(1+m’) 4
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7 1'hee¢;mtiouwﬂ!eehaﬂiofth:r.-ciwclex%yz+25.|r4»2/‘y«n:=o,,,|“,,e
middle point is (x;, y1) is .
- "l*”l*!(‘*‘l)*ﬂ)’*‘)’l)*c‘xlz‘")’l +2gx +2fn +e.
Proof. Any line through P (xy, y1) is of the form
' X-% _y-)
cos® sin® )
Any point on this line is of the form (x; + r cos 8, y; + r sin 8). Now for A

and B (Fig. 7.48) we must have ‘
(.t.+rcos0)1+(y|+rsin0)1+2g(x,+rcose)+2j(y1+rsm6)+c=0

=n

e +2r [ (+8)cosB+(y +)sin0 )+ xf + yi +2gx; + 2y +¢=0. Since P
is the midpoint of AB, the above quadratic must have equal and opposite roots; i.c., the
sum of the roots must be zero. )
This gives (x, +g) cos 8 + (y, +/) sin 8 =0
L i
sin®  x+g
x-x _cos® _ y+f

i the form ——L=""=-
Equation to the chord takes the form Yoy Ei0 e

or

Cross multiplying and simplifying, we get xx) + yy; +gx + fy = X+ yf +8x) + fyy.
Hence xx; +yy; + g(x +x,) + fiy + y,).+ c= x} + yi +2gx, +2fy, + cis the equation
to the chord whose midpoint is (x;, y,). Q
Proposition 8. Two circles 5= x?+ y* + 2g,x + 2fyy + ¢, = 0 and
Sy =% +y? + 2g3x + 23y + ¢ = 0 cut orthogonally if and only if
2182+ 2=+

5

Fig. 7.4
Proof. Suppose S; and S cut orthogonally (Fig. 7.49). Then AB* = PA> + PB®. We
have A as (- g1, /i), Bis (- g2, ) and PA2= g} + f1—c), PB*= &3 + [ —cy.

@ -8+ (i~ = (& + P =)+ (8l + i —cz)
or 28+ =01+
Conversely if 28,8, + 2fifs = ¢, + ¢, then we have AB? = PA? + PB? and hence the two
circles cut orthogonally. 4

 Goomomeere GeoueTa 0 STrusa Loes o Gocizs | 305

nh.mawﬁhhhumiummmmmﬁmmm
umbqﬂwhnﬂiuMy-mochamma%f-a’iﬂ
2

&
To o3 =dud=a(1+m).

1+m

Proposition 5. FmagivenpoimPouuideacixclcsmungenuc-nbedﬂwnW
the circle S.

M,wemayukewaex’+y1=a?andebe(x.,y,).Anymgemwsisof

mcform)'=""2ﬂ‘l(1+ )

p=maxa J(l+mz) . This gives

(¥ —mx, P = a¥(l + m?).
or m (x} —a’)-2xym+yt —a*=0.
This is a quadratic in m with discriminant

4T - (5] @)y —a*) =4(a*(xF +y2) - a¥)

- If it passes through (x,, y;) then we have

=4a’(x} +yi -a?) >0
since P(x;. ¥;) is outside the circle.

It has two distinct roots giving rise 1o two tangents from P to the circle. O
Propesition 6. The equation to the chord of contact of tangents to the circle x2 + y2 +
2gx + 2fy + ¢ = 0 from a point outside it
is .+ + x4 x) +fy+y) +e=0.

Proof. Let A (xa, ¥,) and B (x3, y3) be the points of contact of the tangents from
P (xy, ¥)) to the given circle. Then the tangent at A has the equation
xx3 + ¥y2 + g (x + x3) #fly + y2) + ¢ = 0. The tangent at B (x3, y3) has the
equation xx; + ¥¥3 + g (x + x3) + fly + y3) + ¢ = 0. Now (x;, y,) lies on both these
tangents. Hence, we have
* Lo+ Y+ + )+ fly +y)+c=0
and ©X3 + Viva + 80x +x3) + fyy + y3) +¢=0.
But (*) implies that (x,, ¥5) and (x5, y3) lie on the straight line

) +yy +gx+x)+ fiy+y)+c=0.
Thus the equation to the chord of contact of tangents from P (xy, y;) to the circle is xx;
i +gx+x)+fiy+y)+c=0. 5]

A (x,¥;)

Clxp, )

B(xyy)
Fig. 7.47 Fig.7.48
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Proposition 9. The locus of a point whose powers with respect to two given circles are
equal is a straight line perpendicular to the line of centres of the circles.
Proof. Let Si=R 4324 254 2y 40,20
i 1=+ 4 2004 2y 4¢3 = 0
be the two given circles. If P (X', ) is a point on the required locus, then Power of P
with respect to §y = Power of P with respect to S gives
P+ +28X + 26 + e, = (R + (VR + 28X +2fy + 03
or 208 -8 +2(i—f)Y + ¢y~ =0.
Therefore the locus of Pis 2(g; ~ g2) x + 2(fy - f) y + c-e;=00r

) - $» = 0 which is a straight line with slope — %;%- The slope of their line of
L heh

i)

8.

centres is
& —

Hence the required locus is a straight line perpendicular to the line

of centres.
Note. 1. When 5, and S, intersect, we see that the above locus is the common chord.
2. The above straight line is called the radical axis of §; and .
3. Any circle passing through the points of intersection of two circles S, = x + 2 + 2gx
+2fy+Cy=0and S 2. + 32 + 221+ 2oy + C, = 0 is of the form S, + AS, = 0 where
Atsany constant. In factif Sy = §, + A S, = (1 + M P+ (1 +A) ¥ +2 (g1 +Ag) X +
2(f; + Mf3) ¥y + €y + & Cy = 0then S, = 0 represents a circle. In the standard form S, is
given by
2(g, +Ag,) L 2(fi +My) . C +AC,
+— + =0.
1+4 1+A 1+
Clearly. the points P(x;. y)) and Q(xy. y3) the points of intersection of S, and S, satisfy
; + A5 = 0 and hence lic on the circle Sy, Also, any circle passing through the
intersection of §; and S5 is of the farm §; + AS; = 0 (Prove it!) What happens if
A=-17

e

4108, = 0.5, =0arc two circles as in (3), for any circle Sy =5, + A S, = 0 we note that
any two of the three circles have the same radical axes.

S.107 =S, - S, = 0is the radical axis (or the common chord) of the circles S, = 0 and
.= 0 then for any circle 83 of the form §3 =S, + A $, = 0 with A a constant we have

the radical axes of the three circles taken two by two are the same.
Definition A system of circles in which every pair of circles has the same radical axis
is called a couxial system of circles.
6. Any two circles §; = 0, §; = 0 (in the standard form) determine a coaxial system
whose common radical axis is §; - S; = 0 Any circle belonging to this coaxial system
is of the form §; + A §; = 0 where A is a constant. ~ ~ 2
Some illustrative examples
EXAMPLE 1. Find the equation to the circumcircle of the triangle whose vertices are -
(0.1), (-2, 3) and (2, 5). '
SOLUTION. Let the circumcircle be x* + y? + 2gx + 2fy + ¢ = 0. Then substituting the
coordinates of the vertices of the triangle we get 1 +2f+c =0
4+9-4g+6f+c=00r-4g+6f¥c=-13
4+25+4g+10f+c=00rdg +10f+c=~29 =
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“,-‘*-g.p'-hg.fdcup .
g=-13.f=—103andc=173
lim.ec'-—?*b&ep'-ﬂﬁy*—lx-mfh +173=0
o 3R43P-u-Wy+17=0
The circumceatre is (1/3. 10/3) and the radius is J(W)uww)-(lm):s./i&
mzm&..—s-»kmbofdzmw whose sides are
x;y=l.1-2;+3=0-42x-yfl=0.
mo—-ih&hus(x-ry-I)(x-2y+8)+k(x—2y-r8)(2x_y+|)
+ﬂx—y+l)u+y-l)-&(k1y.mkmepmadnwghmmvmd
Qg’m“ﬁ"*ﬁkdl.%mmkandlsudldmdmm
curve is a circle. This forces coefficient of x* = | + 2k + 2/ =~ 2 + 2 k— I = cocfficent
of y; and
coefficiemt of sy =(-2+ 1)+ (-1 -4}k + (2~ ) =—1-5k+1=0
Thus k, I should satisfy [ = — 1 and k = — 2/5. This gives the circumcircle as
(x+y-1)x-2y+8)-2U5(x-2y+8) (x-y+1)
—(-y+Dhx+y-)=0
Simplifying we get
32 +3y2-2x-20y+17=0.

EXAMPLE 3. Find the equation of the nine-poini circle of the triangle whose vertices
are A(2.4). B(4. 6) and C(6, 6).

Let A’, B, C be the midpoints of BC. CA, AB respectively. Then A” is (5, 6), B is
(LS)‘!CBG‘S).Lalhznine-poimcin:leofAABCbex2+)1+ng#2/')'4-(:0
Then A", B, C lic on this circle gives

10g + 12f +c =61 m
8g+10f+c=41 2)
6g+ 10f+c=34 3)

Solving (1), (2) and (3) we get g =~ T7/2, f=—10and c = 94.
Therefore the mine-point circle of AABC is x* + 2 ~7x - 20y + 94 = 0.
EXAMPLE 4. A circle is drawn with its centre at (- 1, 1) touching x* + y* — 4x + 6y
— 3 = 0 externally. Prove that it touches both the axes.
SOLUTION. Let r be the radius of the circle drawn with centre (- 1, 1). Since this
circle touches x? + y* - 4x - 6y ~ 3 = 0, whose centre is (2, - 3) and whose radius is
J@+9+3) =4 extemally we must have distance betweent (2, - 3) and (- 1, 1)
=r+4.

This gives J(9+16) =5 =r+4 or r = 1. Hence the second circle drawn with
centre (~ 1, 1) is (x + 1) + (y - 1)* = | which touches both the axes (see Fig. 7.50)
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Fig. 7.50
mmmkmﬁi—;m&mhdnﬁ.
xxaf + (zaP=d

or xFaf + (yraPs=d

MPLE 5. A and B are two fixed points. P is a moving point such that PA = nPB.
Find the locus of P.
SOLUTION. Let us take A to be (0, 0) and B (a, 0). Then

PA? 2

P T

x5y

———— =n’where Pis(x,y),
(x=a) +y
Therefore the locus of P is
2+ =rlx-af + 5

or (-2 + (- 1)y -2n%ax + P =0
which is a circle.
EXAMPLE 6. Show that the circle on the intercept of the line Ix + my = 1 with
ax + 2hxy + by* = 0 as diameter is )

(am® — 2him + bF) (% + ) + 2x(hm - bl) + 2y (hl-am ) +a+ b =0
SOLUTION. ax + 2hxy + by? = 0 represents a pair of lines y = myx, y = myx through
the origin got by factorising

2;5“[:_,., . )
bx b x ™)

—2h '
'l'hmforcwchawcm,-rm;:Tandm,m::% m

Taxas

Fig. 7.51
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Fig. 752
Lt O be's = myx and OB be = myx. Then A(x;: 3,) and Bz, v2) satisfy
k],_,,,:lux,:]ﬂ—“
=
»=
T+,
L m
vz ——
Similarty Tomm T

‘lkqp‘-.n&dvkuu&ﬂasdnmuaxs
G-xpn -X)+ -3y -y =0or
Par-t+nm-(; 43y ne =0 ®)

1 1 21 +mim, ~m

We hawe x!+1:=lvln‘*ll'ml»_ﬁ_fi~brlm,'m;)‘”7""”':
_ Mem-24)  _ 2bl-2hm %
F + bmi-2vb) +m /b bi~ — 2him + am”
N -2kl + 2ma
Samilarty ""“:-H:—Zhl-fam:
Alié P, ST
(1 + mom, X1 + mm, )
b
e i from (**)
Sismilarty. you= e =
4 mm ¥I + mm,) am® - 2him+bi*
Sabstitating ia (*) we get the reguired circle as
Ry 2(bl - hwm) s 2Aam - hl) . a+b =0
B Ohtmiam’ | b —2him+ant  BF —2him+am’

or (ame? - 2 him + BP)x* + y%) + 2 (hm — bl) x + 2(hl - am)y + a + b = 0.
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m,f..uzux_yoqﬁﬂm-nuwmmmmmdmk
through their point of infersection, namely (0, 0) (See Fig. 7.52 and extrapolate); and
w‘,,bgo.nisinhaomiﬁuhn’¢7ky+by?=0myb=mpapwﬁnduﬂm.
7. Find the circumcenire of the triangle formed by x + y = 0, x~y = 0 and
1x + my— 1. Ifland m vary such that F + m? = 1, show that the locus of its circumcentre
e curve(2-¥F =2+ ¥ ;
soLunoN.Solvinglbeslniglllin:sx—yso.xd-’=o‘lx+my=llwobytwowo
’,dgvenimns
i (_‘_ il 11
MO Tem Tem mc(l-m'm-']
If (. k) is the circumcentre then SA” = SB? = SC? and hence

e B ~ wDorkeke—t_ o)
I+m (I+m) I+m
2% 2 -
% =0orh-k=—1— @)

! m I-m (I -m)
If I m vary such that /* + m* = 1. then the locus of the circumcentre is got from
., Pem 1
F+B= =0 =(R-FP
K= Y oy W
Hence the locus of the circumcentre is (x? - y%) = (2 + y2).
EXAMPLE 8. Find the locus of the midpoinis of chords of x* + y* = a? subtending a
right angle at the point (h. k).
SOLUTION. Let PQ be a chord of © + * = a* subtending 90° at A(h, k). Let R(x, y)
be the p of PQ. We are i in finding the locus of R. The equation to PQ
may be written as
@, +yy, = X + i (Proposition 7)
Suppose P is (x1. y2) and Q is (x5, y3). The circle on PQ as diameter has the equation
(X=X Hx = 53) + (y = y2)(y = y3) = 0 Now (h, k) lies on it gives (h—x)(h —x3) + (k- y2)
(k-¥)=0
ie. = (xy + xph+ X0 + K= (1 + Yok + 323 =0 (1)

P and Q are the points of intersection of xx; + yy; = X +y} =P (say) with 2% + y?
=a’. This gives ©* — 2xx, + (7 — a®y}/r) = 0 as a quadratic having (x;, x3) as roots.
Therefore 1, + 1, = - 2x; and xzx3 = * —a* ¥; . By symmetry y, + 3= =2y, yy3 =1

- @ /P Substituting in (1) we get I = 2x h + (P — a® yHIr) + ¥ = 2y,k + P - a?

ity =0. Simplifying,
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A6+ 8 23+ 3 + 27 R =0 ince 5+ 5] =),

-a*=0.
is2 ) - 2k + ky) + i + K2 - a? =0.
mﬂ‘;ﬁ%ﬂ;’tf the common tangents to the circles 2yl tdxs

_4=0andx?+y —4x-2y+4=0. )
fl{)LI;ION.mcimks,=x2+y=+4x+2y—4=0hasA(- 2, - 1) as its centre
and has radius 3 The other circle S, has B(2,1) as its centre and has radius 1. The

distance between the centres = AB = 245 > the sum of their radii which is 4. Hence
we have four common tangents.

3 2(,}.9,,’)—2(hx.+‘)’1)*"z"k2'“z=o‘

Flg. 7.53

The centre of similitude 57, 5", divide the line segment in the ratio of their radii namely
3: 1 internally and externally. Hence
§yis (1, 172) and 82 is (4, 2)
Any straight line through 5", is of the form y — 1/2 = m(x - 1)or2mx~2y-2m+1=0.
If this were to be a tangent to the circle S,
2m(-2)-2(-1)-2m+1 _ -6m+3 =3
Jiam? +4) 2Jim* +1)
ord (m? + 1) = (1 - 2m?) or Om® + 4m + 3 = 0. Therefore m; = = and m? = — 3/4 are the
roots. Hence the transverse common tangents are x = | and 3x + 4y -5 =0.
Again any straight line through $%; (4, 2) is of the form
y-2=m(x-4)ormx—y-4m+2=0
If this were to be a tangent to S, then
m-2)-(-1)-4m+2 _ -6m+3 _ 2m+1 _
Vo +1) Jaemd) iemt "

or | 4+ m? = (~2m+ 1)? which gives 3m? - 4m = 0. Its roots are m = 0. m = 4/3. Hence
the direct common tangents are y -2 =0 and 3x -4y + 10=0.
EXAMPLE 10. The circle x* + y? = a° is given by the parametric equation x = a cos 0,
y =asin 0. Find the equation 1o the chord joining *8'and ‘¢’ on the circle ¥ + y* = @’
SOLUTION. The point ‘0’ is (a cos 6, a sin 8) and ‘¢’ is (a cos ¢, a sin ¢). Therefore
the equation to the chord joining ‘6" and ‘¢’ is

then

s Conu o T PGt Moy

16. Mcirdaloachtl:msolymdinwneclind\epoinu(l.O)md(Z‘—l), Find thej
radii and show that they will both touch the line y + 2 = 0.

17. Find the equation of the circle passing mmghmeoriginmdcuuingmhogonnly%
of the circles ¥+ y* -8y - 12 =0 and x* + y* ~ dx — 6y — 3 =0,

18. leldlheIov:\uofm:wntxuohllciﬂ:leuvhichlouchmeIinex=2amndcmu-.gc.,ﬂe
x* + y? = a® orthogonally.

1. Prove that (- 4, - 1) is the centre of one of the escribed circles of the triangle
3x-4y=17.y=4,12x+ Sy =12

2. The vertices of a triangle are (2, 1), (5, 2) and (3, 4). Find the coordinates of the centroid
G, circumcentre S and the orthocentre H. Show that G divides HS in the ratio 2:1.

3. Find the cquations of the interior bisectors of the angles of the triangle 11x + 2y = |3,
22x- 19y =3, x - 2y = 119; verify that they are concurrent.

4. A line moves'such that the ratio of the perpendiculars upon it from two fixed points is
eonstant. Show that it passes through a fixed point.

5. Two equal circles of unit radius have their centres at (0. 2) and (1, 0); find the equations
of their parallel common tangents.

6. r-md the coordinates of the in and ex-centres of the triangle (50, 20). (-13. 20), (2. -16),

7. A, A’ are two points on the x-axis and B,8’ are two poipts on the y-axis; AB’. A’B meet at
X and AB. A’B’ meet at Y. Prove that OX. OY are harmonic conjugates with respect (o the
axes and are equally inclined to each of the axes. [If ACBD is a harmonic range and O is
a point not on the line ACBD then OC, OD are harmonic conjugates with, respect to
0A. 0B]

8. The reciprocals of the intercepts which a line makes on the axes are connected by an
equation of the first deg ree; show that the line passes through a fixed point. Discuss the
case when the intercep's have a constant ratio.

9. Ay Aj..A, are n given points and a straight line / moves such that the algebraic sum of
its distances from A,, A,....A, is zero. Show that it always passes through (x7n, v7n)
where ¥’ = Xx;and y’ = T and A, is (x,. y) 1 Si<n.

10. Prove that if the perpendiculars from the vertices A, B, C on the sides EF, FD, DE of
another tniangle DEF ar: concurrent, then the perpendiculars from D, E, F on the sides
BC, CA. AB are also concurrent.

11. Show that the vertices of the quadrilateral whose sides are given by

lx+my+n=0,i=1,2,3,4are concyclic if
(tyma — Lymy) (sly + mymg) + (lymy = Lymy) (1l + mymy) = 0. Can you explain, why this
condition does not involve ny, ny, n3, ng?

12. Two straight lines making a fixed angle a cut off equal scgments of length & (constant)
on the coordinate axes. Find the locus of their point of intersection.

13. A variable circle cuts the y-axis at fixed points ¥,,¥; and the x-axis at X,.X,. Show that
the equation of the locus of the point of intersection of X, ¥, and XY, or of X, ¥; and X, Y,
is?=(y-y) (y-y) where ¥,= (0, y) i=1,2.

14. Find the condition that the line x cos & + y sin &t = p should touch the circle ¥ + y* = 2ax.

15. A circle is described on a chord of a given circle as diameter 50 as to cut another
given circle orthogonally. Prove that the locus of the centre of the variable circle is a
circle.
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x-acos® _  y-asin®

el L SR L
acos®-acosd asin®-~asin¢

X —acos®

y-asin®

(Note that 0 # ¢ + 2kx)
ZSmueose*’_’
2 2
Jwsal
cos 218
2
6+¢ . 0+0 3
or wa'Z—*ysm'z—-a(m0m—°;°+sinesin——°;‘)
0+ .
or xcosT0 +ysin ;’ =acot92.

As a corollary we note that the tangent at ‘9" to the circle x* + y> = @ is xcos 0 +y
sin @ = a (obtained by putting 8 = ¢ in the chord equation).

EXERCISE 7

. Find the equation of the circle passing through (0, 1), (2, 3) and (-2, 5).

Find the equation of the circle with centre (2, 3) and touching the line 3x + 4y = 5.

Two rods whose lengths are a and b slide along two perpendicular axes in such a way

that their extremities are always concyclic. Find the locus of the centre of the circle.

Show that the circle x* + y? + 4x - 4y + 4 = 0 touches the coordinate axes. 2

Show that x? + )2 = 400 and &2 + y? — 10x - 24y + 120 = 0 touch one another internally.

Find the coordinates of the point of contact.

Find the locus of the centre of a circle which touches x cos @ + y sin @ = p and the circle

(x-aP+(-bP=

. The lines Ix + my + n = 0 intersects the curve ax® + 2hxy + by? =/ at P, Q which lic at
finite distances from (0, 0). The circle on PQ as diameter passes through (0, 0). Show
that n? (a + b) =P + m*.

. Find the points on x - y + | = 0, the tangents from which to the circle x* + y* - 3x =0 are

of length 2

Find the locus of a point the tangents from which 1o the circle 4x* + 4y* - $ = 0 and

9x% 4+ 9y? - 16 = O are in the ratio 3:4.

10. Find the equation of a line inclined at 45° to the axis of x, such that 2 + y? = 4 and

RS

S

o

-

=

»

¥ 4 3%~ 10x - 14y - 15 = 0 cut off equal lengths on it.
11. If xcos & + y sin @ = p touches (x - a)? + (y - b)* = ¢, then prove that a cos & + b sin &
—-p=x¢

. Show that the locus of the feet of the perpendiculars drawn from the point (a, 0) on

tangents o the circle ¥ + 2 =a?is (2 + Y —axf = y* + (x- @)%
. Show that the locus of the midpoints of the chords of contact of tangents drawn to a
given circle from points on another given circle is a third circle.
Find the equation of the common tangents to the circles

© 437 - 22c+ 4y + 100 =0 and £ + y* + 22x -4y - 100 = 0.

IS. Show that the tangents to the circle x* + y* = 25 which pass through (- 1, 7) are at right
angles.

s
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" mm‘,m_hmcimius.-u-.yq,- -rt=0,i= angles!
Mmhmllmlhecimles.r,emﬂz-smzeﬁlom M‘IN-""""”
Mmguammrhh*mmﬁr ll

mﬁxedcimls.wbichvﬂlbeuriﬂ.,dg;“ that the bi

Wﬁuwmmmm“mdmmdmu S

A line [ passing U 2 fixed point O meets n given straight li
u-mﬁvely.u_P-s-?oim?nlmmwrxvgnﬁvosﬁfn:;;::z;ﬁ

the locus of P is a straight line.

A point moves such that the sum of the squares of i istances .

al; ,:;ngle isaommﬁonmitshmind:: from the angular points of

22. A point P moves so that the sum of the squares of the perpendiculars from it on the sides
of an equilateral triangle is a constant. Prove that the locus of P is a circle.

23. A point moves such that the sum of the squares of its distances from n fixed points is a
constant. Prove that its locus is a circle.

2. erislhcimersecu’onofxcnsuoysinu=pandxsina-_vmu=q.whavpandq.!
constants and @ is a variable, prove that the locus of P is a circle. B

25. In a variable AABC. vertex A is fixed and B moves on a fixed circle: further AABC is
similar (o a fixed ADEF. Prove that the locus of C is a circle and find its radius.

26. From points on the circle & + y? + 2gx + 2y + ¢ = 0, tangents are drawn to-the circle x*
47+ 2gx + 2fy + ¢ sin' + (g7 + £?) cos? @ = 0. Prove that the angle between them is 20

27. AABC has vertices A(a cos @. a sin @), B(a cos , a sin B) and C (a cos Y, a sin ). Prove
that its orthocentre 1s given by H (a{cosat + cosB + cosy), a (sin @ + sin B + sin 7).

28, If ABCD is a cyclic quadrilateral, prove that the orthocentres of the triangles ABC, BCD.
CDA and DAB lie on a circle (Hint: use problem 27).

29. Find the length of the common chord of the circles, x* + y* ~ 2x— 4y - 4 = 0 and x* +*
~3x + 4y = 0. Find also the common tangents and show that the length of each common
tangent is 4.

30. LetL=ax+by 'r:()andL’sa‘xob'yo(:Obemﬁns,mem!luaiﬁn
lies in the aculcorobluccmglehﬂwecntheﬁnammdings(m’#bb’)tﬁ'u<u>0.
Deduc:lh;nl(,.\,)napmnlonlheaculeorobt\lsemgl:bdweml,lndL if (aa’ + bb")
LiLy"is <or > 0. (where Ly =ax; + by, + cand Lj=a’x) + 5"y + ).

31. Consider the mulme\Liux&ly_v+c=l)nnd£’ln’x+b’y¢{=0.
Prove that the bisector of the acute angle between L

L/,/(az*h:):L'l,/(a:¢b2\.ifm’+bb’<(konthcwxerhandifaa’¢bb'>odleu
. 2 -
the bisector of the acute angle is L/J(aub‘nu,)(a +b?) =0.

2 ThelmeLsu.x‘b\—r=0mlerseclsMdmleilﬂn;f-bg:(ln&&showmme
circle on AB as diameter is S + 2AL = 0, where A = c/la” + &) ) _
bz ™
3. A(-3.4). BlS.4).C.Dform;mclanglmx—lyf‘l=0|s|dumﬂm'oﬁhemumca
of the rectangle ABCD. Find the area of ABCD. )
34. If the coordinates of the vertices of a triangle are all integers.
equilateral.

and L' is

show that the triangle is ot
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passing through A(3.7)and B (6, 5). Show that the chords

35, Letfbe the flmilyol’cilcles_ ax + by - 3 = 0 cuts members of the given family are

36.

39.

40.

41

Chapter 8

. With notations as in problem 36, ptove

i i circle & +

e point of concurrence. o
axes inclined at an angle o. Ifa straight line [ cuts OYatL(0,c)
positive OX axis, prove that the equation to / with respect to
here m = sin 8/sin ((© - 8) = 4nB/(sin ® - cos W1an §)),
that the equation to the line at a perpendicular
B with OX, O respectively is

concurrent, Find the
OX., OY are two coordinate
and makes angle 8 with the
the axes OX, OY is y =mx + ¢ Wi

distance p from the origin and making angles o,
xcosa+ycosB=p.
With notations as in problems 36 and 37

y=mx+cris

B B .1 L

14 (my +my) cOs @ + mymy

With axes as in the previous problem. if A, B are the points (x;, y1). (X2, y2) respectively
prove that the equation 10 AB is y - ¥ (O = yl(xy = x)) (x = %) )
ABCD is a quadrilateral such that the sides AB, DC meet at E and BF‘.AD meet aF.IfL,
M, N are the midpoints of AC, BD, EF prove that L, M, N are collinear. (Hint: take AB,
AD as the oblique coordinate axes).
Prove that the area of the triangle formed by the straight lines x cos &; + y sin o =p
i=1,2,3is 172 (p) sin(a; - ap)(sin(ct; - 0) sin(ay — o) sin(op - )}

prove that the angle between y = mx + ¢, and

. Show that the orthocentre of the triangle formed by the lines y = mx + a/m,is (- a,

a(llmy + Vimy+ Vms + Vmymamy)).

. In AOAB a straight line parallel to AB meets OB, OA at X. ¥ respectively; find the locus

of the point of intersection of AX and BY.

Systems of Linear Equations Page 317

SYsTEMS oF LINEAR EQUATIONS

In Chapter 6 Section 11, we di d the topic of Eli This was the process
by which, from a system of equations, we eliminated one, two or three parameters and
obtained a relation ion) among the ining o vari The process
stopped there. In this Chapter we shall take a system of equations (all linear in the
sense to be explained later) but now arrive at a complete solution for the variables
involved.

8.1 TWO AND THREE UNKNOWNS

Suppose we had a simple linear equation in one unknown, such as
Tx-22=0 o
We can easily solve this for x. We have only to keep the term containing x on the left
hand side of the equation and take the other terms to the right side. Thus (1) leads to

Tx=22
ie. x=22/1.
Let us take another example. Consider
3(x+5)-2a=0 (2)

where x is unknown and a is a known quantity. We are asked to solve for x. Again we
keep the term containing x on the left side and take all the other terms to the right side,
including the term in a. We get
3x=2a-15
x=23a-5
thus giving the unknown x in terms of the known a. Thus the problem of a simple
linear equation in one unknown is completely solved.

In this chapter we shall consider linear equations in more than one unknown-
particularly. in two and three unknowns and leam how to solve them. Consider the
equation

2c+3v=8 3
where v and v are both unknowns and have to be solved for. The best that we can do
now is 1o imitate what we did with (2) earlier. Keep cither x or y on the left side and
take the other variable to the right side. Let us keep x on the left hand side and take y to
the right, thus:

2c=-3y+8
317
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ily of circles passing through A(3, 7) and B (6, 5). Show that the

= r-f:amm?ck£+f-«wy—3=ommmbegim family apy
concurrent. Find the point of concurrence.

36. ox.oymmmﬁmuaw-mmku"-mighgunelcuuovum,,,
M_hngeommﬁmoxmmmmpmnqmlmmh
ﬂ:naox,or'ny=.x+cwbucu=sinelsin((m—&:mnﬁl(smm—msmune».

. thmxaﬁonsainpmbhm!&povnhlrheqmﬁmmmeﬁneuaperpemwh
distance p from the origin and making angles a. B with OX. OY respectively jg
xcosa+ycosB=p.

38. With potations as in problems 36 and 37 prove that the angle between v=myx + ¢, and
y=myx+oyis

! (my —m,) sin ©
1+ (my +my) COS O + mym,

39. Widuxcusinlheptcvic\l:wcblﬂ!l.ifA.Buelh‘epoinls(x..,\w). (x2. ¥2) respectively
prove that the equation to AB is y - 1 = {(% = Y% - %)} (x-x)).

40. ABCDE:MMMM&MSAB.DCMHEMBCADmccu(F.|fL
M, N are the midpoints of AC, BD, EF prove that L, M, N are collinear. (Hini: take AB,
AD as the oblique coordinate axes).

41. Prove that the area of the triangle formed by the straight lines x cos @, + y sin @, = p;
i=1,2,3is 172 {p, sin(as - a)(sin(a; - &) sin(@, - &) sin(@; - @)}

42. Show that the orthocentre of the triangle formed by the lines y = mx + @/m, is (- a,
a(lmy + VUmy+ Vms + Ummams)).

43. In AOAB a straight line parallel to AB meets OB, OA at X, ¥ respectively: find the locus
of the point of intersection of AX and BY.

(AR

SysTeMs oF LINEAR EQUATIONS

In Chapter 6 Section 11, we discussed the topic of Elimination. This was the process
by which. from a system lol' equations, we eliminated one, two or three parameters and
obtained a relation (eq ) among the ining iables. The process
stopped there. In this Chapter we shall take a system of equations (all linear in the
sense (o be explained later) but now arrive at a complete solution for the variables

involved.
8.1 TWO AND THREE UNKNOWNS
Suppose we had a simple linear equation in one unknown, such as
7x-22=0 m

We can easily solve this for x. We have only to keep the term containing x on the left
hand side of the equation and take the other terms to the right side. Thus (1) leads to

Tx=22
ie., x=22/1.
Let us take another example. Consider
Jx+5)-2a=0 2)

where x is unknown and a is a known quantity. We are asked to solve for x. Again we
keep the term containing x on the left side and take all the other terms to the right side,
including the term in a. We get
3x=2a-15
x 3a-5
thus giving the unknown x in terms of the known a. Thus the problem of a simple
linear equation in one unknown is completely solved.
In this chapter we shall consider linear equations in more than one unknown-
particularly, in two and three unknowns and lear how to solve them. Consider the

equation
2v+3v=8 (&1l
where x and v are both unknowns and have to be solved for. The best that we can do
now is to imitate what we did with (2) carlier. Keep cither x or y on the left side and
take the other variable to the right side. Let us keep x on the left hand side and take y to
the right, thus:
2c=-3y+8
317
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hich gives x=-32y+4 ()
thus giving ¥ in o :?t'md kept y on the left side and taken x to the right, we woulq
In the same way
» 3y=-2c+8
le y=-23x+83 ®)
sadaivosy £ C e solution for the unknowns. They only

i ives a complete
sl (4)' “:«(::lfm erp k But in the of the
s In other words, whenever there are two

e do.
lem. this is the best that we C‘:‘n is given relating them, the best that we can do

unknowns and only one linear equati
iswexp:mmeinwmsofdseothcr. )
Now let us consider two equations in two unknowns. Let us start with
2x+3y=8 (:)
Sx-y=3 , ™)
are said to

i and y. These qi
y;;ﬁme&ﬁﬂ;;:::‘g:q“m);m Solving a lix!ear system implies lh.c
simultaneity of the validity of the solution for all th equations of lh(i syslem_‘ Itis
called a Linear System because there is no term involving x ory in the second or higher
degrees. Recall the definition of ‘linear function’ from secuon‘S.b. ) )

Let us now imitate what we did in the case of one equation, Viz.. (}3) with two
unknowns. There we kept one of the unknowns on one side of the equation ar.|d lf)ok
the other to the other side. Let us do the same here with each of the two equations.

From (6) we get

2x=-3y+8

x=-32y+4 )
From (7) we get

Sx=y+3

x=15y+3/5 9)

Since stimultaneity means that both the equations (6) and (7) are to be .\-meﬁcd by the
same values of x and y, the two expressions for, x, viz., (8) and (9) one of which comes
from (6) and the other comes from (7) should be the same. Thus we should have
-3y +4=1/5y+3/5
Now this is an equation in a single unknown. So we should be able to solve it by
collecting on one side, all terms involving the unknown. Accordingly we have.
=32y-15y=-4+3I5
we may multiply by 10 throughout, in order to get rid of all fractions. This gives us

(10)

~15y-2y=-40+6
ie. -17y=-34
ie., y=2 -

Thus one of the unknowns is resolved and more than half the battle is over. We have
nov’ only to substitute this value of y in one of the given equations, either (6), or (7).
Doing so in (7) we get

[Gvarees o Lnen Ectimong| -

5x-2=3
ie, S5x=5
i€ x=1

The complete solution of the system comprising of (6) and (7) isx=1and y = 2.
Going back over the method we see that there are two stages in the working. The
first stage is to manipulate with the given equations and arrive at an equation involving
only one of the unknowns. This process is usually called the ‘elimination of one of the
unknowns’. This was what we did when we arrived at (10) from (6) and (7). The
second stage is to solve this single equation for its only one unknown and then use that
value (by back-substitution in the original equation) for the solution of the second
unknown. This second stage is comparatively easy. It is the first stage that requires
some ingenuity. In order for the student to get the real hang of this ingenuity, we shall
take the same problem as the one solved above and exhibit the steps of the ‘climination”
process in a simpler manner. Start with (6) and (7) once again.
2r+3y=8 6)
Sx-y=3 (@)
Let us work for the “elimination’ of x. The first equation has 2x in it and the second
has 5x. These coefficients 2 and 5 have an l.c.m. of 10. If we multiply all the terms in
the first equation by 5. the term in x will become 10x. If we multiply all the terms in the
second equation by 2, the term in x will become 10x. Then a subtraction of one equation
from the other eliminates x. We record this as follows:
(6) x 5 gives 10x + 15y =40 (11)
(7) x 2 gives (12)
(11)=(12) gives

Le., P,
Note that (11) and (12) are nothing but the original (6) and (7) except that we have
multiplied the equations by ‘suitable’ constants such that the x term appears in both
with the same coefficient. Now it only remains to subtract one equation from the other
in order to get rid of the x term. Having done this and having got the value of y, a back-
substitution in one of the original equations resolves the other unknown.

Looking back we see that the only difference between this and the earlier method is
that we have a more conveniently lined dure. Itis in fact a standard strategy
which can be expressed as follows: :

“Multiplying each of the equations by suitable nonzero constants and by subtraction
or addition eliminate one of the unknowns™.

We can test our understanding of this strategy by going back to the same equations
(6) and (7) once again and this time eliminating y instead of x. We start again with (6)
and (7).

2v+3y=8 6)
Sx-y=3
The coefficients of y in the two eqt are 3 and -1. Their l.c.m. is -3. So we should
attempt to get -3y in both the equations. This means we multiply the first equation by
(=1) and the second by 3. This and the further subtraction process is what is meant by
the symbolism: d .

~1x(6)-3x(7)
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This symbolism means: ) )
Multiply equation (6) by 1. multiply equation (7) by -3 and add the resulting two
equations.
This process gives,
@) x(=1)-(5xx =@ x(-D-Bx3)

ie. -1x=-17

Le., x=1

And now, a back-substitution of this in either (6) or (7) gives the answer
y=2

This completes the solution.

Whether we eliminate x first or y first, it s immaterial. Whatever strikes as convenient
may be done. We shall now illustrate the entire procedure by a new example. with

minimum commentary on the working.

EXAMPLE 1.
3x-dy=17 )
2+ 5y=10 )
(x2: 6x-8y=14 @)
(2)x3: 6x + 15y =30 @)
@) -0 23y=16
ie., y=16/23
Substituting in (1) we get
3x-64123=7
ie., 3x=7+64/23=225/23
x=175123
Thus the solution is:
x= L andy= 19
23 23

In the above working, we have eliminated x first and obtained the solution for y,
which, in turn, led to the solution for x. Alternatively we could have eliminated y first,
obtained the solution for x which, in turn, would have led to the solution for v. The
following working shows this alternative:

(x5 15x - 20y =35 39
@ x4: 8x+20y =40 ")
3)-@): 23x=75
© ke x=75123
Substituting in (1) we get
225123 -4y =1
ie., 4y =64/23
Le., y=16/23

thus giving the same set of solutions for x and y as before.

The beauty of the strategy and of the working is that it has been so streamlined that
we can extend the same procedure 10 solve a system of three equations in three unknowns
an illustration of which we shall take up now.
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Thmmmmaherduopmﬁonofmepmc&es:
E2-2xEl;E3-3xEl

is x-y-2=0 E\
Ox+5y-5z=1 E2
Ox+Sy+5z=5 E3
[E?2 — E3 changes the system to the following: (Note that this changes only £2 ang
not E3).
El
E2
4 E3
Now E3 + 5 and E2 + (~10) give the new system:
x-y-z=0 E]
Ox+0y+2=2/5 E2
Ox+y+z=1 E3
Add E3 and also E2 to E1. Also do E3 - E2. We get
x+0y+0z=1 El
Ox+0y+2=2/5 E2
Ox+y+0z=3/5 E3
This is nothing but
x=1
y=3/5
z=2/5.

This is the complete solution for the problem of Example 2.
‘We observe that in the above process of so|
only the i d

three op P ¥
(1) Interchanging any equation with any other in the same system.
(2) Multiplying any equation by a constant: and

+ (3) Adding to any equation a constant number of times another equation

lving a system of linear equations we do

With just these three operatons we should be able o handle any system of 3 linear
" equations in 3 unknowns. In fact, as the student goes to higher levels of education he
will learn that the three operations (processes) are enough to handle any number of
linear equations in any number of unknowns. This is the reason for the above
streamlining of the whole process and for describing this process in such detail.
We shall now consider one more example, which will, incidentally, not claborate
the steps beyond the mere symbolic indication of the process at cach stage.

EXAMPLE 3.
2x-3y=8 El
4x-Sy+z=15 E2
5 2 +4z=1 E3
. E2-2Eland E3 - El give
2x-3y=8 El
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EXAMPLE 2. Solve the system:
+3y-Tz=1
x-y-z=0 n
3x+2y42:=5 @)
The strategy Will now be to elimi f the unk oy S — ,(3)

in the remaining two unknowns. Thereafter the procedure will be as in Exam;;lc 1
At this point we shall give the student an im i i ;
g . portant advice. |
follow a certain discipline in the recording of the steps in the :nork:n’gs “Tl::s:ies;mriﬁ:
will be apgrlehccm;ed by the student when he moves to the higher classes and begiﬁs to
underst: eep math that lies undi bl i
simmultaneous linear equations. such p ofSoltion’of

The three equations (1), (2) and (3) form a single system. Each time we meddle
with one of ‘hcn:. say (1), multiply it by a constant, we arrive at a new equation [that
may be called (1")]. Butactually what we have is a new system of three equations viz.,
(1) and the old (2) and (3). This ‘new” system is not really new. It is said to bc
*equivalent’ t0 the old. Any solution of the new system .

(17,2, 3)
is also a solution of the old system
(1), (2), (3) and vice versa.

The mathematics W!’lich proves this is not difficult, but we shall skip it now. We
only note th.nl every time we get a new (equivalent) system in such a manner, we
shall discipline ourselves to write all the equations of the new system together in
one bunch — even though some of the equations are the same as the original.

Secondly we shall call the equations E1, E2 and E3 instead of (1), (2) and (3).
This is again. in anticipation of a convenience which we will need at a higher level.

Third!x since we are going to keep on meddling with the equations of the system
several times, we shall not add to the numbering by writing £4, ES and so on. Every
time the new system is written in full, we shall call the equations of the system
again by the same names E1, E2 and E3. The student will understand this when he
sees the working below:

Now for Example 2.

> Ty
+3y-Tz=1 £l
3 '7 -’) 2
A+ 2y + 22 E3

Interchange of £2 with £] gives an equivalent new system: (There is a convenience in
keeping Lx at the top left corner)

X-y &1
20+ 3y-7 E2
3x+2+2:=5 E3

E2 -2 x EI keeps the first equation unaltered and changes E2 as:
Ov+5y-5:=1

E3 3 x E1 keeps the first equation unaltered and changes E3 as
Ox+5v+5:=S5
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0‘+y+z=-|

Ox+3y+4z=_7 =

F1+3E2and E3 = 3E2 give °
2c+0y+3z=5

Oc+y+z=-] 5

Ox+0y+ z=-4 0

1 - 3E3and E2- E3 give -
2x+0y+0z=17

Ox+y+0z=3 -

Ox+0y+z=-4 =

Rewriting the last one, we get the final answer o be . "
.
y=3
z=-4

which is thus the complete solution to the problem.
Note that an operation like E1 - 3E3 keeps £3 btracts
ree times E3 and gives a new E1. Each oty m:changedh:\::m from E1
e, should be und in
We shall now go back to the solution of two €quations in two unknowns and
how this lined p hanises the soluti ey el
e 5 on. In fact that is one of the
purposes of the streamlining. This way we can easi| s
o easily go on to the computerisation of

EXAMPLE 4.
El
E2-El gives :f
| E2
s x E2 gives
2v-3y=8 El
Ox+y=-122 . E2
El +3E2 gives 1“,0‘1'_3 El
T2
1
Ox+y=- = E2
Rewriting the last one, we have -
13 1
x=y=-3.
EXAMPLE 5. 2-3y=8 El
E2

4x-6y=15
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E2-2E] gives
2&-3y=8 El
Ox+0y=-1 E2
i i ing0=-1
The last one contains an equation (E2) saying ) . )
Mkmmmmmasymwwmqmﬂalse?q“mm
Jike this, we conclude that the given system of equations is inconsistent. msm
there cannot be any soiuﬁmothcpmblem.oﬁnuherwotdstbelwo equations of the
symnm:imnlmnwslyhold.
EXAMPLE 6.
2u-3y=8 £1
: 4x-6y=16 E2
E2-2E] gives ‘
2&-3y=8 El
Ox+0y=0 E2

Here the 2nd equation is actually an identity. 0=0so it does not contribute anything to
the solution of the problem. So we are left with the only equation

=T 2x-3y=8

In this case we repeat what we did earlier (see page 318) in a similar situation; viz.,
we keep one unknown on one side and express it in terms of the other. Thus we get

2x=3y+8

ie., x=32y+4 *)
Whatever value we give to y, we get a corresponding value of x from (*). For instance,
we get

11
y=lgvesx= 3
y=0givesx=4;
y=-1givesx=5/2.
Each pair of values thus obsained for x and ¥ becomes a solution to the given problem.
In other words there exists an infinity of solutions for the problem.

The special situations that arose in Examples 5 and 6 with two equations in two
unknowns may also arise in the case of three equations with three unknowns. But
before we go to these examples we shall illustrate the situation by a very simple example,
namely that of one equation with one unknown. The general type of such an equation
is

ax=b )
where a and b are constants and x is the unknown. Three cases may arise:
Case 1. a # 0. In this case, the solution is x = b/a. This is the unique solution to the
problem in this case.
Case2, a=0and b#0. Now 0 x x = b # 0. This is impossible. So x has no value
satisfying this case. In other words, the equation is inconsistent; i.e., it cannot
hold for any value of x.
Case 3. a=0=b. In this case, we have to find x such that
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Ox=0
But any value of x will satisfy this. In other words, this case has infinite
number of solutions.
Thus in general, the solution to a system of equations.
(1) could exist and be unique;
(2) could exist, but there may be infinite number of solutions;
(3) could be istent; i.e., the equations are i i
For a general system of linear equations one can predict beforehand, i.e., without
actually trying to ob!aiq a solution, whether the problem falls under case 1 or 2 or 3.
This is part of the objective of the branch of mathematics known as LINEAR
ALGEBRA.
Now let us go to the Situations of case 2 and case 3, in the problem of three equations
in three unknowns.

EXAMPLE 7.
x+2y-32=0 . El
Sx-4y+7z=1 E2
2x-3y+5:=1 E3
E2 - SE1 and E3 - 2E] give
x+2y-3z=0 El
Ox-14y+22z=1 E2
Ox-Ty+1lz=1 E3
E2 -2E3 gives
x+2y-3z=0 E1l
Ox+0y+0z=-1 E2
Ox-Ty+llz= E3

The second equation of this last system is obviously false for any values of x. y, z.
Hence the equations are inconsistent.

EXAMPLE 8.
-y+32= El
x+2y+z=1 E2
x+y+dz=6 E3
Interchanging £1 and £2 we get
X+2v+z=1 El
2x-v+3z=$ E2
E3

3v+v+dz=6
Note that a term like 1y at the top left hand corner enables u *s to multiply £1 suitably
and subtract the result from £2 and £3 and thus arrive at Ox in both £2 and E3. Thus
E2 - 2E1 and E3 - 3E1 give

X+ 2y £l
Ox - Sy E2
Ox-Sy+2 E3



228 G o T o Pre-Gonisce Minesil] oy or Lo B |

E3 - E2 gives
x+2y+2z=1 E\
Ox-Sy+z= E2
Ox+0y+0z=0 E3
This shows that there are essentially only two equations in the system.
Now - %xmgivs
x+2y+z=1 El
Ox+y-USz=-3/5 E2
E1 - 2E2 gives
x+0y+%z=15-l— El
0x+y—%z=-3/5 E2
Rewriting this we have
-
58
b D
y=3i5-

Thus x and y are expressed in terms of z. Since essentially there are only two equations
in the system, each particularised value of z, gives certain values to x and y and together
these three form one solution. We can give an infinite number of values 10 z. So there
are an infinite number of solutions to the system. For example, giving z = 1, we get
x==T5+11/5=4/5
y=15-3/5=-25

Sox= %.)‘:— %.z= 1 is a solution. Again, giving z =0,

pull a3

5° 5
and this forms another solution. Thus the system admits an infinite number of solutions.
Cmn-fnult}pliuﬁnn rule. This is a rule which gives the solution to the system of
intwo h aunique solution exists. Let us consider the

systcn'|

ax+by+c=0 El
ax+by+c =0 E2

where a, b, ¢, @', b', ¢’ are constants such that

ab’-a'b#0

b’ x E1 - b x E2 climinates y, thus:

(ab’ - a’b)x + Oy + (cb’ - ¢’b) = 0 so that

_bd-bc

Tab'-a'b

x
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Notemillbedenominmisnolmmdlhliswhywemlbkm(ﬁvidﬂheelrﬁet
equation by ab’ - a’b throughout.

lmhesnnwway.todiminn:xwedommm,lxﬂ_,xn
This gives
0xx+(@b-ab)y+(ca’-ca)=0

so that.
_c’-ca
Y= b —ab
Thus the complete solution is
i -be _da'-ca
X=F-ad' y= o —ab

on the assumption ab’ —a’b # 0.
nemonic to remember this solution, one writes the coefficeints of the system as

' S,

be'—b'c ca’-c'a ab'-a'b

Asam
follows:

The first two expressions

be' - b'c and cd’ — ¢’a are numerators for the v
Jast one is the denominator for both. Thus
be'=bc
e gy
lication rule, can be i diately applied to specific
to equations (6) and (7) at the beginning of this

alues of x and y respectively and the

x=

This formula, called the cr ip
problems. For instance, applying it

Chapter, we get
2 3 -8 2 3
D O O

-40+6

x =1, y=2is the solution, as was known already.

Solve the following systems of linear equations in each case, by two methods viz., (a) elimination
method of variables; (b) row reduction process:
3. X=y= 5

2c-2y=4
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3 x-y=§ 4. ux+3y=7
2-2y=10 x+2y=3
5. x+y+z=3 6. x+2y-z-3wru=4
A+z=4 +3y+z+2u=10
2y+z=2 y+2w+u=5
7. x+y-2=2 8. Ix+y+z=1
2+z7=3 6x-y=1
x-y+dz=-1 by+z=5
9. x+y+z=1 10. x+y+z=1
y+z=-1
1. 12 ¥ x+y=9
+y=3
x-y=4
13. 4. x+y+3z-w=2
2x+2y+22 4
15. x-y+w+z=10 16.
. y-z=4
x+w=14 Sc+3v+3z=10
17. X+y+z+w=2

x-2y+2:+2w=6
u+y-2:4+2w=-5
3x-y+3z-3w=-3

8.2 INTRODUCTION TO DETERMINANTS AND MATRICES

Let us now consider the g ical implications of the p:

back to equations (6) and (7).
2c+3y=8 [8)]
Sx-y=3 (2)

On the two dimensional plane, these two equations each represent a line. To solve the
two equations algebraically is just to find the point of intersection of these two lines. If
the two lines are parallel the point of intersection will not exist as a finite point. If the
two lines coincide, every point on one line may be taken as one of the several points of
‘intersection’ and so there are actually an infinite number of common points. This is
what happens in the case of Example 6 (Sec 1)

Here there is only one line. So there are infinite number of solutions. In the case of
Example 5,

2x-3y=8

4x-6y=15,
it is easy to see that the two lines are parallel and distinct. So there is no point of
intersection.
. From the ltiplication rule that we
in two unknowns we see that, for a general system

for the case of two equations

s section. Let us go
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ax+by+ec=0
dx+by+cd =0
three cases could arise.
Case 1. The two lines are distinct and not parallel. So there must exist a point of
intersection. Being ‘not parallel’ is equivalent to saying
a b
Ll
a b
i.e., ab’ —a’b# 0. We also saw earlier that a solution exists and is unique iff
ab’-a’b#0.
Case 2. The two lines are distinct and parallel. In this case there is no point of
intersection. This case happens iff
b e
a v
Actually this is part of the case complementary to case 1. In case 1 we had
ab’ - a’b # 0. In the present case we have ab’ - @’b = 0 and in addition, we

a <
have — #—.
a ¢

Case 3. This is the remaining part of case 2. We have

- a_c ah e
ab’ - a’b=0and = F.lnfmwehave T
Now the two lines are coincident and so there are an infinite number of
solutions

We can tabulate the three cases as follows, for the system:
ax+by+c=0
dx+by+c =0

o
af-ab | be-be ol ~aTys |s wuBl
Non-zero - - Solution exists and is unique
Zero | Non-zero Non-zero No solution (Equations
| are inconsistent)
Zero [ Zero Zero Infinite number of solutions

The reader should convince himself that no other cases can arise. It is clear that the
three quantities that decide the behaviour of the solution are #
ab’ — a’b, b’ — b'c and ca’ - ¢‘a. Of these three, the behaviour of ab_’ —dbi.e.,
whether it is zero or otherwise, is imp for the ',_, or ofa
unique solution.
In fact from the above table we note the following. The system
ax+by+c=0
ax+by+c =0
has a unique solution iff
ab’-db#0
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The quantity ab’ - a’b s called the Determinant of the system. It has a special symbo]
for itself, viz.,

a b
To arive at this symbol, one looks at the system of equations, takes x, y terms in
their proper positions and simply writes the coefficients
a b
a b
as they appear in the equations and draw two vertical lines on cither side. The
determinant is actually the symbol

ubl

a b
e
and ab’ - a'b is usually, called the ‘value of the determinant’. It is also customary to
write

a b
a b
One remembers the value ab” - a’b by referring to the mnemonical diagram below, in
particular, to the arrows in the diagram:

a a'

<y
Thus we may state the following theroem.
Theorem The system

=ab’-a'b.

ax+by=c
ax+by=c *)
has a unique solution iff the determinant

a b

a b

is non-zero. If the determinant is zero, then the system
(#) has no solution if

Thus the determinant

a b
plays a aucnl role in predicting the behaviour of the system (*). In the case of three
equations in three unknowns; say,

332 (Chnumnoe o Thms o Pre-Cotveae MATieiancs |

a, 4y ap
@y aGp Gy
ay Gy Ay

we associate, a determinant, written as det A
ay ap a4y
ay ap 4n
ay ay ay

*)

and its value is defined to be
ay a ay ay ay ay
ayx |2 B[4 napx |72 8| van| Mt F
ay @y ay Gy a3 axn

Thus the third order determinant (*) is defined in terms of second order determinants,
These second order determinants are the determinants of some 2 x 2 submatrices
obtained from the 3 x 3 matrix A. Consider the entry ay; in A. Itis in the Istrow and st
column. Strike off the 1st row and Ist column. What remains of A is a 2 x 2 submatrix
of A.Its is called the minor M, ob d from A. In general if
we strike off the ith row and jth column of A, what remains of A is a 2 x 2 submatrix of
A Its i is called the minor M,. For the 3 x 3 matrix A given
above the det A is defined as

apM; +ay(-Myp) +a3My3

ay(=My) + anMy + ax(-My;)

ayMy, +an(-M) + axMy;

ayMy; +axn(-My) + ayMs,

ap(= M) + apMy; + as(-My)

apM3 + an(-Ma) + anMs;.
Two important points have to be noted here in respect of this definition.
(1). All the six expressions above give the same value. This fact is one of the
beauties of the definition of a determinant, but we will not be able to prove it for the
general case here. Certainly it can be verified to be true in every special case.

(2) Note that, to some of the minors we have prefixed a minus sign while others
stay as they are. The rule is: To M, prefix a plus sign if i +j is even and a minus sign
if i + j is odd. We can further condense this statement by saying that the sign to be
prefixed to M;; is (1) */. With the sign so prefixed, we arrive at what is called the
COFACTOR of the term a;; and we denote it by the corresponding capital letter A,,.
Thus,

2288188

Ap=ED"My
eg., Ay =(-1M, =M,

Ap=(-1)*My; =~ My and so on.
With the cofactor notation we can now give a one-line description of the six expansions
of det A given above.

Take any row or column. Multiply each of the elements in that row or column by its
cofactor add. The result is the value of the determinant.
" So detA =apAy +apdp +apAn
=ay Ay + anAy + aypAy and so on.
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ax+by+cz=d

dx+by+cz=d

a'x+b'y+ "z =d”
the behaviour of the solution similarly depends upon e nall ]
of the system, which is a function depending on the coefficients
. ¢ But now this ‘determinant’ has 10 be defined. What wedezn:}:;r{l':' vi.{'
a b
e
is called a second order determinant. Before we define third order (and higher order)
determinants, we prefer to make a useful digression by taking up the subject h:rhmm

Aman-ixisanmyo{symbols(whichuuﬂdbelulwmkxmm i

,‘,,,smdcolumnssuch!humhmwhs!hestmembu.n,ofsymlsmd):;
column has the same number, m, of symbols. Thus it has m rows and n columns. Such
ammixissaidmbeofn'zemxu.Wbenm:n.lhenmﬁxisuidmheuqlmt
matrix, of order n. Here are some examples of matrices.

=ab'-a'b

[a a:J: This is a 2 x 2 matrix (also called a
b b square matrix of order 2)

a a6, ay . 2

[b, I b,] ‘This is a 2 x 3 matrix

ay Gy ... Gy

Gy 8p .. Gy

; This is a m x n matrix

Gy Gy - Gy

10 1
{0 -1 2]: This is a square matrix of order 3.
2 3 -4
With each square matrix of numbers we associate a ‘determinant of the matrix’. We do
this inductively.

With the 1 x | matrix (a), we associate the determinant of order | and with the only
entry a. The value of the determinant is a.

With the 2 x 2 matrix

(=)

a v

Wwe associate the determinant

a b I

a b

whose value we have already defined as ab’ —a’b.
With the 3 x 3 matrix A:
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This expansion of a determinant 20es by the name

determinant.
Mlustration
-2 -3
A=|3 0 -
I -1 4
Expanding in terms of the elements of the first row, we have
detA =apdy +apdp +apA;,
=anMy +ap(-Mp) +a;3M,,
=ll0»l 3‘1_33 0
-1 4 1 4 1 -1
=1(0-1)+2(12+1)-3(-3-0)
=-1+26+9=34.
Just for curiosity, let us expand det A in terms of the 2nd column.
We have

of Laplace Expansion of the

+2

detA =apAy +apdy +andsy
= 3 - 1 -3
=—(-2 -
=2) 1 4 (l)l3 ‘ll

=2(12+D+1(-1+9)
=26+8=34
We may now go back to second order determinants and discover that the same rule
applies there. Take
A= [“u al:]
an 9

The cofactors are

Ap=ant Ap=-an
Ay =-ap Ap=ay
So det A = apAy +apAp = anan —anay
Also det A =ay Ay, +anAy = a8~ aya2and soon.
Now the rule of Laplace expansion of ad casily g to fourth and all
higher order determinants. Here is the illustration
218 2 410 2 710 2
1410 Sl=ax[s 5 8| -axjs 5 ¢
9 5 9 3 3 e 43
7 4 2 7410
+7x|6 8 8/-6x|6 8 5
9 59 95 3

i i 3rd order
Thus we have expressed the fourth order determinant it terms of four
determinants. Similarly every nth order determinant can be expressed as the sum of

7 (n— 1)th order determinants.
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Ea " . in the abdve manner bﬂOmcsm
licated, even with i ormmﬁkﬁtﬂmﬁmm& Bu
e jes of determinants which et valuation to
x‘"m‘y’:l:wwmylwﬁﬂﬂﬂmwww'”m”fwmWi:h::
any idea of a proof, because these proofs are rather u.lvolved and must be postponed 1,
.wlevelofmmilyinlhesmdem‘smmemmcdwmer.
BefwewemMpqpﬁeSwneedonemecmwcplmdnomdonwimmm
lom-iw&cnivenmuxnmmixA(wivhmmwsmdncolumns)weoblainam

matrix

AT, called A-transpose,
whose rows are just the columns of A. In fact the rows of A are the columns of A apq
columns of A are the rows of A7. A” has n rows and m columns; so its size is n x m. In
the literature it is customary to say that one interchanges rows and columns of A and
obtains AT. More precisely, the first row of A is the first column of A”, the 2nd row of 4
is the 2nd column of A” and so on.

Now we are ready to list the properties of determinants, referred to above. Let A be

a7 X n matrix.

1. det A = det A”. In other words, every square matrix and its transpose have the
same determinant. Or, again, if the rows and columns are interchanged in a
determinant, the value of the determinant remains the same.

2. If two rows of A are interchanged to produce a new matrix B, det 8 = —det A. In
other words, if, in a determinant, two rows are interchanged. the value of the
determinant changes in sign (and not in magnitude).

3. If every clement of a given row of matrix A is multiplied by a number a, the
matrix thus obtained has determinant equal to a det A. As a consequence, if
every element in a row of a determinant has the same factor. this common factor
can be taken outside the determinant.

4. If one row of a determinant has its elements of the form

@ +Bay+B;..
then the determinant itself is the sum of two determinants, one of which has
...
in that particular row, and the rest of the rows same as in the original; and the
other of which has
BiB:...
inmnpuﬁcnlxmwandd)ermoflhemwssa.mcasinmongmal.
.lflwo rows of a determinant are identical, the value of the determinant is zero.
(Stated for 3rd order determinants. For the other orders, the statement and proof

“w

6.
are analogous)
a b ¢
Let a4 b o|=a
a by ¢

and let Ay, By, Cy, Ay, B,...., be respectively, the cofactors ofay, by, ¢y a3, by, ...
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Then
a)Ay + 0By +¢/C=0
ajAy + bBy + ¢C; = 0 and 50 on.
In other words, if the el of any row are multiplied by the cofi of the
corresponding elements of a parallel row, the result is zero.
7. If a fixed multiple of the elements of one row of A are added to the corresponding
elements of another row of A the resulting matrix has the inant as A.
8. Properties 2 to 7 are true if we write ‘columns’ instead of ‘rows’.
Of the above, as stated earlier we skip the proofs of Nos. 1 and 2 without even
iving an indication of the proof. But here are tv ples ill ing the prop

EXAMPLE 1.
13-50 .
01 24

Let Axl3 9 F 1
14 =12
10-3 1
31 2 %

Then AT=|_5 2 3 -1
04 1 2

The theorem (Property 1) says that these two matrices have the same determinant.
EXAMPLE 2.

’13—50 13-50
o1 24 |14 -12
-32 31 "|-32 31
'|4-12 01 24

Note the Row 2 and Row 4 of the determinant on the LHS have been interchanged to

obtain the determinant on the RHS. )
Sketch of a proof of (3). (The proof is given for a 4th order determinant but is clearly

indicative of the proof in the general case)
G 6, 4, 4,

aolt bbb
Lo “lg g ¢ o
d, d, dy d,

Let B be the matrix obtained from A by multiplying the 2nd row of A by a.

a a, a 4
ab,
Then B= ab, ob, ab, )
6§ 6 &6 G
d, d, dy d,

Expanding det 8 in terms of the 2nd row. we get det B

= (ahy) x cofactor of by in A
+ (ahy) x cofactor of by in A
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+ (0tb3) x cofactor of by in A
+ (0bg) X cofactor of by in A
=0fbyB) + byB + byBy + byBy]
where the capital letters stand for the corresponding
cofactors .
=adetA.,
thus proving (3) for determinants of order four.
Sketch of a proof of (4). We give the proof for 4th order determinants.
a, a, a, a,
o +B 0o, 4B, a;+B; o, +B,
y £ Sy L7
dl dl d] dl

Let A=

a a, ay a,

bl bl b] b‘

G ¢ ¢ ¢

d, d, d, d,

The crucial point of the proof is the following fact.

Cofactor of b; in A” is the same as cofactor of o, + B, in A. First note that the minors in
the respective determinants are the same, by having a look at the following pictorial
representation of the minors, say, of b, and of o, + ;.

Let A=

73 h)
% %) 4 4 a a ) a4
N R R )

< ? cy €y ‘
d | 4 d d,
Qe T
Secondly check that the same signs get prefixed to the minors of b, and o, + B, because
they occupy the same position in the respective determinants.
Therefore, expanding A in terms of its 2nd row, we get
A =(a, + B,) x cofactor of b, in A’

+ (0 + By) x cofactor of b, in A’

+ (03 + B3) x cofactor of b in A’

+ (0 + Pg) x cofactor of by in A’
4

< < <y €y €
d |d)| dy d,J

©; x cofactor of b, in A

i=1

s
+ Zpl x cofactor of b; in A’

337
4 G a4 a4 |a g ay a,
=% % @ e 1B B, By B,
9 a a al'lg ¢ ¢ e
dy dy dy dy| |d, d, d, d,
ihis last step being true because one can expand these determinants in terms of their
2nd rows and also the cofactors of the ;’s and B;'s in s
of byin 4" determinan those
Reader, note the arguments of this proof well. The beauty of the theory of
determinants begins to present itself here!
Sketch of a proof of (5). Let det A be

a a6, a; a,

b, b, by b,
a9 & 6 G
b b by b,

Note that the 2nd and 4th rows are identical. Interchanging 2nd and 4th row we get the
same determinant. But property 2 says that the value of the determinant changes sign.
So
detA=—detA
This means det A = 0.
Sketch of a proof of (6)
ajAy + bBy +¢,C

a b ¢
=la, b ¢ *)
ay by

for, expand the determinant on RHS in terms of the 2nd row and note malcol"mors of
ay. by, ¢, in the 2nd row are the same as cofactors of . by, ¢, in the determinant

a b ¢
a b o
ja; by &
But the determinant on the RHS of (*) has two rows identical; so it is zero! The same
argument will prove

aAs+bBy+ Gy
=0
=aA, +byB) + €y
= aA; + biBy + 203
= aA, +b3B, + Gy
=ay + by + 3Ca o
Consolidating the results of (6) we may note ’lhll. in ﬁmﬂ;k::::
of any row are iplied by their respec ed
it if these elements are multiplied by the
"““‘ - ﬂ;_ ::cnmnnnl. (‘)" lhc‘o!hcr h::d; parallel row and the results added, we

will get zero.
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+ Sketch of a proof of (7)
a4 a6 a4 a

aolboBobb

Lt G 6 & &
dl d2 d] d‘
a a = I
il B b '::’dl b ::’d: by ‘:)"dl by :’dt
4, d, d, d,
The theorem says: det B = det A.
We have det B

G @ @y G, ) 1@ @3 @ 4,
b b b b |od od ad, ad,

q ¢ 6 ¢ G G ¢ .« by propesty (4
dy dy dy d,| |d, dy, dy d,
ay 8y By, G
=de(A+fI ':l' ': ‘:: i‘ by property (3)
dl dZ d} dl
=det A +zero by property (5)
=detA.

Proof of (8) This follows from property (1). In other words whatever is true of rows in
a determinant is also true of columns.

‘We may now use all these 8 ies for ipulating with d In doing
50 we keep the following in mind which is nothing but a summary of the lessons of
experience gained by application of the above eight properties.

(a) We can expand a determinant in terms of any row or column,

(b) If we have to expand, it is desirable to expand in terms of a row or column

which has many zeros in it,

(¢) One of the ies of mani ion with d

same row or column,

(d) We can take out a common factor from any row or column,

(e) We can add to any row or column a constant multiple of a parallel row or

column, and
(f) Wecani
a minus sign outside the determinant,
EXAMPLE 3. Evaluate

is to obtain zeros in the

g€ any two rows (col )

provided we balance it by prefixing

I 2 3
2 -10
-1 01
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SOLUTION. We start by trying to get zeros in the 2nd and 3rd entries of the Ist
column. For this, we subtract 2 times the first row from the 2nd row and again add one
\ime the first row to the 3rd row. Symbolically we represent this process by

R:-2R, and Ry + R,
Note that only R; and R; change by these processes; R, remains as it is. So Ry-2R,
gives

E 2 3
0 -5 -6
-1 0 1
On this, Ry + Ry gives
1 2 3
0 -5 -6
0 2 4

This, on expansion in terms of the Ist column, gives | x (- 20 + 12) = -8.
EXAMPLE 4.

I a be
1 b ca (Do Ry - R, and R, - R, on this)
I ¢ ab
1 a be
=|l b-a cla-b) (Take the common factor a - b from
- |l e-a ba-c) 2nd row and ¢ — a from 3rd row of this)
5 1 a be
=(@a-b)(c-a)x [0 -1 ¢ (Now expand in terms of Ist column)
0 1 -b

=(@a-b(c-a)(b-¢)
=(a-hb-c)(c-a
Now let us go back to the solution of linear systems of equations from which all this
started. Take Example 2 of Sec.1. It is a system of three equations E,, E; & E; with
three unknowns. Three op were dly p this system and finally
we had the solution of the system. If we carefully look at the way the equations have
been manipulated, we may note that the variables x. y, z do not play any role. Only
their coefficients play the crucial role and are subject to all the manipulations. We shall
therefore reproduce the working of that problem, but now without the x, y, z. We sln_ll
exhibit only the coefficients. We shall consider the array of coefficients as a m(r!x
(remembering that 1 stands for 1x and so 1 is the coefficient and simillrly.. no term in
xstands for Ox and so 0 is the coefficient; and so on for y and ). So equations E1, E2,
E3 will correspond 1o three rows of a matrix, which we shall dc'nme as R, R2, R3
(R standing for row). Thus we end up with the following presentation (see next page)
of the manipulation of the matrix of coefficients which led to the :‘oluh_tyn of the sys‘lem
of equations. For a reading convenience we present the old work:r_lg wnl‘h the equations
on the left side of the page and the matrix of coefficients on the right side of the page.
Now look at only the matrices on the right half of the page. The only operations we
have used are of the three types:
Type 1: Interchange of two rows
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Type 2 : Multiplying one row by a number o

WJ:Addinglonmnnon-moomumﬁmmmhermw,
These are the three elementary row operations to which we have already referred earlier.
These row operations acting on the original matrix of coefficients of the system give
the final solution. This solution is explicit from the final stage of the matrix reduction,
Note that throughout the matrix of coefficients keeps the alignment of the x terms, y
terms and z-terms properly — so that, finally from the last matrix, we may read the
solution as

x=1, y=3/5andz=2/5.

The process of reduction of a matix by these row operations is called Row reduction,

Now let us apply the row reduction method of solving a simultaneous linear system
to the following four equations in four

El:2x+3y-7z a 1 2 3 -7 1 R
E2:x-y-2 = 0 -1 -1 1 0 R
E3:3x+2y+2z = 5 3 2 2 5 R3
El < E2 (Interchange): R1 > R2 (Interchange):

X=y~2 = 0 1 -1 -1 0

2+ 3y-7z = 1 2 3 -7 1

3x+2y+2z = 5 3 2 2 5
E2-2E1 & E3 - 3El: IR2 - 2Rl & R3 - 3Rl

X-y-2z = 0 1 -1 -1 0

Ox + Sy -5z = I 0 5 -5 1

Ox + 5y + 5z = 5 0 5 5 5
E2-E3: R2-R3:

X=y-2z = 0 1 -1 -1 0

Ox+ 0y 10z g 0 0 -10 -4

Ox+5Sy+5z = 5 0 s 5 s
E2+(-10) & E3 +5: R2+(-10) & R3+5:

x-y=-z = 0 1 -1 =1 0

Ox+0y+z = s 0 0 1w

Ox+y+z 1= 1 10 1 " 1"
E3 -E2: R3-R2:

xX-y-z = 0 1 =1 -1 0

Ox+0y+z = 225 0 0 1 us

Ox+y+0z = 35 0 1 o0 35
E2 ¢ E3: (Interchange): R2 & R3 (Interchange):

X=y=-z = 0 1 -1 -1 0

y = 35 0 1 0 35

z = 225 0 0 1 s
El+(E2 + E3): R1 +(R2 + R3)

x = 1 1 0 0 1

y = 0 1 0 s

z = s 0 0 VU

(8 e Loean Eacarons |

EXAMPLES.

X+5y+z-4w=6
Sx+y+5z+4w=6
x-9y+z+10w=-38

X-4y+z+5w=-3

We present the row reduction of the matrix below:

L 5 1
5 1 5
1 -9 1
1 =4 1
Apply ~5R1+ R2; -1R1 + R3; - IRl + R4
1 s 1
0 -4 9
0 -4 0
0 -9 0
Apply —-1/24 R2; ~1/14 R3; -1/9 R1
1 5 1
0 1 0
0 1 0
0 1 0
Apply - 1R2 + R3; ~ 1R2 + R4
1 5 1
0 1 0
0 0o 0
0 0o o
Apply - SR2 + R1
1 0 1
0 1 o
0 0o 0
0 0o 0
Writing this in the equation form, we get
x+z+w=1
y-w=1
and there are only two equations. This means
x=1-z-w
I+w

y

Thus for every artitrary value given to z and w we getone pair of v-!uef forx andy: In
other words there are infinite number of solutions for the system. For instance, taking

w=1=zwe have

-4
4
10
5

x=1-2=-landy=2

thus giving x = -1, y =2, 2= 1, w = | as one solution.

C o= ===

o - -

341
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Taking w = 1 andz=0wewouldhavex=0._v=Zmusgivin;ﬂwmludonx=0_
y=2z=0,w= 1. And so on we have an infinite number of solutions.

EXAMPLE 6.

2+ 8y+4dz=1
Sx-6y+10z=-1
x+Ty+2z=0
2 8 4 1
5 -6 10 -1
1 7 2 0
Ry 3 R, gives .
1 7 2 L0
s° -6 10 -1
2 8 4 1
=5R; + Ry & -2R, + R gives
. 1 7 2 0
0 -4l 0 -1
0 -6 0 1
~1/41 Ry and ~1/6 R; give
1 7 2 0
0 1 0 1/41
0 ! 0 -3/6
Ry - R, gives
1 y 2 0
0 1 0 1741
o - 0 0 -1/6-1/41

The third equation here is
11
Ox +0y+0z=-—~—
s T
which is impossible. Therefore the system has no solution. The equations are
inconsistent.

Incidentally the determinant of the last system is

2 8 4
5 -6 10
1 72
0 -6 0
=(0 -41 0
1 7 Z

=Ix(-6x0+41x0)=0
Also the determinant of the system of the four equations in Example 5 is

I
5 15 4
1-91 10
1-41 5
1 51 -4
0-240 24
“lo -14 0 14 by-5R; + Ry
0 -90 9
~ 1R, + Ry and - IR, + Rq
051 -4
= (=1124) x (~1/18) x (~1/9) g : g :: b
010 -1
1 51 -4
s 15 4
=t -9 1 10
0-41 5
1 51 -4
0 -24 0 24
=lo =340 14 by SR, + Ry, — IR, + Ry; and — R, + 4
0 -90 9
051 -4
010 -1
= (=1/24) x (-1/14) x (-1/9) 010 -1 =
010 -1

since three rows are identical. )
Again, the determinant of the system of three equations of Example 2, Section 1 is

2 3 -7
1 -1 -1
2 2

5 -5
=10 O

w

"

by C;+ Cy and C3 + Cy

3% 9
=-1(25+25)=-50
and thus the determinant is non-zero. In fact it can be proved that the solution of a
systemo{nequauomlnnunkmwns,wlthtbelulsm:llmu‘lﬁsmdh
unique, iff the determinant of the system is non-zero. The three examples above
corroborate this statement. )

Our next task is to analyse the case when the determinant is zero, more deeply. But
before we do that let us settle once for all the case of the non-zero determinant, by
giving a precise formula for the solution of 7 equations in 7 nnkx_lowns with the RH.S
entries not all zero. We shall give the working only for the special case n = 3, but the
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mdumudmﬁsgmﬂiss:omyn.ﬂnfomnhmobuinisuﬂedcmvs
Rule.

CRAMER'S RULE
Consider
ax+by+cz=d )
ax+by+cz=d; )
ayx+by+ciz=dy 3)
with the hypothesis,
a b ¢
A=|a, b ¢ |#0
ay by b
PRELIMINARY REMARKS

Let the cofactors of Abe Ay, By, C), A, B;, C3, A3, B;, C;. Then we know that
aA,+bB, +cCi=A fori=1.2,3
‘This is almost the definition of the value of the determinant. Also we know
@A) +ahy +ady = A
byBy +byBy + byBy = A
G+ G +eCi=A
since columns of a determinant behave exactly like rows.
Further we know that
bA | + biA; + biA; = 0
ClA + Ay + A3 =0 )
and similar results — where we multiply elements of a column by cofactors of
corresponding elements in another column.
With this background, multiply equation (1) by A, equation (2) by A, and equation
(3) by A3; add the three results and see what happens. We get
HaiAy + @Ay +ahs) +y (BiA| + bA; + bAy)
+2C)A; + A + C3A;)
=d\A) + dA; + doAs.
On the LHS, the coefficients of y and z vanish, in virtue of (*). So we have
xA=d\A +dA; + d:As
4 b q
4 b o
dy by o

S~
R
oD

=3
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Again, multiplying (1) by By, (2) by B;and (3) by By and making a similar calculation.

we get
a d, ¢
a, dy, ¢
a dy o
y=

A

We obtain, similarly,

a b d
= 1% b d,
A
Thus the system has been completely solved. This method of solution is called
Cramer’s Rule. Note that if A = 0 the method fails. )
EXAMPLE 7. Solve, by Cramer’s Rule, the following system of four equations with
four unknowns.

a, b d|\

x+3y+2z=1
2x+z+w=-1
x+2y+32=2
3x-y+w=0
1 320
2 0 k4 5
SOLUTION.Here, A=|, 4 3 ¢ (Do R4 - R2 on this)
3 -101
1 3 20
2o 1A in terms of the 4th Col.)
=1 2 30 (expand in 5
T -1 -10
13 .
ayaxll 2 3 (Do R, - Ry and Ry — R, on this)
1 -1 -1
1t 3 2
=0 -1 1|=G+4=7
0 -4 -3
1 320
1f-1 011 _ R, on this
Then x=312 230 (DoRy— Ry )
0 -101
1 3 20 this in terms of the 4th
1|-5 0 L1 (Espend column)
=32 2 30
0o -1-10
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1 3 2
=12 2 3 (Do Ry~ 2Ry and Ry - R, on this)
7 o =
1 -1 -1
I 1 3 2
lo -4 -1|=17(12-4)=87
Tlo -4 -3
1 120
112 -1 11 x
r=3[1 230 (Do Ry - R; on tis
3 001
I 1. 20
12 -1 11 .
=301 2 30 (Expand in terms of the 4th column)
1 1-10
1 L d 2
=7xlx 12 3 (Do Ry - Ry and R; - R on this)
11 -1
1 11 2
==(0 1 1| =-317
Tlo 0 -3
1 3 10
112 0 -1 1
=31 2 20 (Do R - R; on this)
3 -1 01
1 3 10
12 9 -11 v
=371 2 20 (Expand in terms of the 4th column)
1 -1 10
1 1 31
=?xlx : 2 2 (Do R, - R, and R; - R, on this)
-1 1
I 3.1
o e |
7{o -4 of 7
L 32 U
12 01 -1
wEall 2.3 2 (Do R, + R, and Ry - 2R, on this)
3-10 0
I 3 23
I3 & 3%
“Tl=1 =4 =1 0 (Expand in terms of the 4th column)
3 -1 00
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3 3 3
1
=g %% _31 ‘4| ‘;’ (Take out the common factor 3)
s |11
esgxl=l =4 =l (Do R, + R, on this)
3 -1 0
1 11
=-7x[0 -3 0[=-37x9=-217
3 -10
Thus the complete solution is:
s o 4 . 2
'7-.Y—‘7-Z—7.W—-7.
the method of

Though Cramer’s Rule gives a foolproof method of
row reduction is more elegant and is applicable even when A= 0. The efficiency of the

method may be seen by a g of ple 7, now by dug process.
1 3 2 0 1
2 0 1 1 -1
1 2 3 0 2 Apply R, - 2R,
3 -1 0 1 0 Ry—R & Ry-3R,
1 3 2 0 1
0 -6 -3 1 -3
0 =1 1 0 1 Ry o R
0 -10 -6 1 -3 Then apply (- 1) x Ry
1 3 2 0 1
0 1 -1 0 -1
0 -6 =3 1 =3 Apply — 3R, + Ry; 6R, + Ry,
0 - 10 -6 1 -3 10R; + Ry
1 0 5 0 4
0 1 -1 0 -1
0 0 -9 1 -9 Apply -Ry +R;
0 0 -16 1 -13
1 0 5 0 4
0 1 -1 0 =1
0 0 o 0 4
0 0 -16 1 =13
Apply;l XR;



348 [Ouassoe wo Tiew o Pre-Consoe Manewsncs
1 0 0 4
0 1 -1 o -1
0 0 1 [ Apply -5Ry+ Ri: Ry +Ry;
o o -16 1 -13 . 16R, + R,
1 0 0 0 4-207 =817
0 1 o o -1+47=-31
[ o 1 0 an
0 0 0 1 -13+647=-2777

8 3 4 4

'n:-x-;:y=-;;z=7;w--7.

In a similar working of Example 5 however, we find that there are an infinite number
of solutions. There we also had the determinant of the system to have zero value.
‘Wherever the determinant is zero, a unique solution does not exist. Either there is no
solution (as in the case of Example 6) or there is an infinity of solutions (as in the case
of Example 5). In this last case, inising the answer for ple 5 we see that

x=l-z-w
y=l+w.

Every value of z and w gives a pair of values for x and y and there is a solution of the
system. Thus there are as many solutions of the system as there are possible values for
zand w. What value we give to z does not depend on the value we give to w: and vice
versa. Thus z and w can be independently given values, each an infinity of values. We
say that the solution has two degrees of freedom. Once z and w are fixed x and y
depend on them and are uniquely got.

In all the above les and ills ions of m equations with n unk S, we
always had m = n. Le., the number of equations and the number of unknowns were the
same. When this is not so the determinant method is not applicable. We have to follow
row reduction of the matrix or use a direct method of elimination of variables. The
following Examples illustrate this.

x+2y-z-3w+u=4
2x+3y+2+2u=10
y+2w+u=5.

SOLUTION. Here there are 3 equations and 5 unknowns. We follow the row reduction
method.

1 2 -1 -3 1 4

2 3 1 0 2 10
[ 0o 2 1 s Apply —2R, + R
1 2 -1 -3 1 4
0 -1 3 6 0 2
0 1 0 2 1 5 Interchange R, and R;
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g1 % 2 1 3 Apply =28+ R, and
0 ~1 3 & o 2 Ry+ R,
S PR W L.
I O SE ST o g
0 1 0 2 1 s
o 0 3 8 1 1
1
sxk,
M O =L ST 4 6
o 1 0 2 1 s
0 0 1 83 13 13 Ry+ R,

This gives
32 1
x= "3_\0* 3"—?
y==2w-u+5
8 1 3
S=TW=TU8+7

2 3 3 3
thus showing an infinite number of solutions, with two degrees of freedom, since w
and u can be arbitrarily fixed.

We can do the same problem by direct elimination of variables:
x+2y-z-3w+u=4
2e+3y+z+2u=10

y+2w+u=5.

Since there are only mraeeqmﬁonswekeepumvuhbhonlthHSmdukeme

remaining to the RHS: thus, iy

SRRy @
2r+3y+
- 6)
M-2x(3) gives
x-z=Tw+u-6 @
(2)-3x(3) gives
2x+z=6w+u-5 )

@) +(5) gives

3x=13w+2u-11
(5)-2x (4) gives

Iz=-8w-u+T
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- Th 3 e 2yl
e g g g
y=-2w-u+5

8 )

z——-sw-—iu#:!

thus giving an infinite number of solutions with two degrees of freedom as before,

Note that, in this last example, there is no sanctity attached to the variables x, y, z. '

Though the answer shows x, y, z in terms of the two variables w and u, we could have
as well kept z, w, y on the LHS and obtained solutions for them in terms of x and y. The
problem fixes only the number of free variables; it does not determine which variables

are to be free. That would be our choice.

EXER(

- Evaluate the following determinants:

12 3 :‘;
@ |4 5 -1 ® |3
02 3 5
-1 103
@2 %32 @ -1 i
@il 2 ~12 2 Tl
2 301

2. Find all the cofactors of the matrix

22 1
A=|1 23
4 32

and find its determinant.
3. Find the cofactors A, A3, A3, and A4 of
3 4 23
1 3 -12
A=ls 5-30
2 -2 6 4
and find det A.
4. Evaluate the determinant of the matrix
| S S . |
a (o
A= 2 2 g
@ b 4

L]

Find the values of A for which the system of equation
(A-1x+2y+2=0
2+ (A-1y-22=0
x=2y+(A-1z=0

has infinitely many solutions.

—_— s

ﬂ
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6, Solve, by Cramer’s rule, those systems of linear equations in Ex 8.1 o which Cramer"
o s

rule is applicable.
7 ax+by+c=0
a'x+ by + ¢ =0, with ab’ - b £0.

Therefore

o
b -b'c

‘What is the error, if any, in this argument?

PROBLENS

1. Solve the following linear systems:
(@) x+y-8z+3w=2
~Tx+y+ 16

x=y-z+2w 2
3x+2y-13z4+w=4.
(b) x+2y+ 2+ 3Iwru=~1

3x+6y+Tz+ 10w+ du=4
Sx+ 10y - 2 + 4w - 6u =~16.
2. For which values of k does
ke+y=1
have no solution, one solutions or infinitely many solutions?
3, If A, is an 11th order determinant

x+ky=1

2 -1 0 . 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 0 -1 2 -1
0o 0 0 0-1 2

Prove that
Ap=24,-A 2
Hence prove that A, =n + 1.
4, Prove that a square determinant of the nth order which has zeros on the diagonal and
ones elsewhere is equal to (=1)"n. s
5. The row rank of a matrix A is defined as follows. Perform row reduction on A such that
the resulting matrix B satisfies
(a) The first non-zero entry in cach non-2ero row (i.e., a row in which not all elements
are zero) is 1; and .
(b) 1f a column contains the first non-zero entry of any row, then every other entry in
that column is zero.
The number of non-zero rows in B is called the row rank of A. . >
With cach lincar system of equations, two matrices may ‘*lf%‘“"“"d' One ",::;
coefficient matrix. The other ed matrix which is nothi hmd\e;mlwbw i
by appending the right hand side entries to the matrix of coen’m-cnu. The development
of this subject in Higher Algebra leads to the following theorem:
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Verify this in all the Examples & Exerciscs of this chapter where we are given a linegr
system of equations.

6 If
1 cos® O 0
cos® 1 cosa cosBl oo,
0 cosa 1 cosy
0 cosp cosy 1
"ea?a+col’ﬂ—2msacauﬂem‘1
8=nx+ (1) sin”!

siny
7. Under what condition is the following true?

0 cosa cos
cosa 1 cosy|=[cosa O cos
cosp cosy 1 cosp cosy O
8. Without expanding the determinants, prove that

1 cosa cosP

sifa cos2a cos’ @
sin?B cos2B cos’B
sin’y cos2y cos’yY

sinf cosB sin(B+3)
siny cosy sin(y+8)
9. Compute the determinant

2524 232 21
20 19 18 17 16
15 14 13 12 11
109 8 7 6
S 43 21

ln‘nu cosa sin(cné)‘

@+b? & é
@ @@ 0+ & |=2abcla+b+cy.
» » (c+a)®

(iiy =a?+ b + - 2ab - 2bc - 2ca + 2d.

0O = -
A en

(* 8 Mg =@+ + 3+ PP

T Y
5 on A
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11. Prove that

1 nn n

n2n n

nn3 n

2 =)

2 REn..a
12 mpu&themminm

Opsn In

L Opm

where /, is the identity matrix of order 7 and O, , , is the zero matrix of the order p X g.



PERMUTATIONS AND
COMBINATIONS

9.1 PERMUTATIONS

The main subject of this chapter is counting. Given a set of objects the problem is to
arrange a subset according to some specification or to select a subset as per some
specification. We shall actually be interested in the number of such possible
arrangements or selections. First of all we shall make precise a fundamental principle
of counting which we intitively use in our everyday life.

Suppose there are two flights (Flight Nos. | and 2) in the morning from place A to
place B and three flights (Flight Nos. 3,4 & 5) in the evening from place-B to place-C.
We ask the question. In how many ways can one fly from place A to place C via place
B? No other restrictions are to be assumed.

Flight | Flight 3

NS
- Flight 2 Flight 4

Fig. 9.1

We reason as follows. There are two ways of flying from A to B. For each such
choice of flight, there nreduec ways of flying from B 1o C. Flight I can be followed up
:z::l)}' ;"::ﬁ?ﬁ’::fmmi ; or; an: similarly ﬂighl 2 can be followed up by any
o bk e x ways of flying from A to C. The following

Flight 1 followed by Flight 3

Flight 1 followed by Flight 4

Flight 1 followed by Flight 5

Flight 2 followed by Flight 3

Flight 2 followed by Flight 4

Flight 2 followed by Flight 5
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The most important point to note here is the fact that what you did in the 2nd leg of
the flight was totally independent of what you did in the Ist leg 9f the nnghkl, In other
words the choice of the flight from B to C had nothing to do with the choice of the
flight from A to B. Thus the two choices for the first leg when paired off mt)n each of
the three choices for the 2nd leg gives us 2 x 3 = 6 possible ways for the flight from

o C. )

A '-n,;_\- argument is the essence of what one calls the fundamental principle of counting.
It can be abstracted as follows: ) )

Suppose an event E can happen in any one of m mutually exclnswg ways. ‘Mutually
exclusive” means: if one way is chosen, the other way(s) are lufomauully not chosen.
In the above example, Flight 1 and Flight 2 are mutually exclus,vc wuys‘of flying fn_)m
Ato B. If one flies by flight 1 then he is not simnlunem_xsly flyms by flight 2 and vice
versa. Similarly flights 3. 4 and 5 are mutually exclusive ways in the 2nd. leg of !h;
flight. If one is flying by flight 4, say, he is not at the same time flying by flight 3or 5.

To continue our abstraction, suppose event £ can happen in any one of m mutually
exclusive ways. Suppose also, independently of event E a_nolher event F can happe;
in any one of # mutually exclusive ways. Then, the principle says. the two events
and F can together happen in mn ways. -

We shall illustrate this principle by a few ples. A proper c of.all
these illustrative examples would go a long way in making the subject of counting
fully comprehensible ‘ ‘

EXAMPLE 1. There are 25 mathematics books and 2‘4 physics books_ ona I;t:mry
shelf. In how many ways can we choose one mathematics and one physics book?

Choosing a mathematics book is Event E.
Choosing a physics book is Event F. . " .
E: 2 lusive ways. Event F can happen i
Event E can happen in any one of 25 mutually excl v "ca
any one of 24 mutually exclusive ways. What physics book we choose |s_|ndepe“mx
of what maths book we choose and vice versa. So Events E ngof; are m:)q;emer be
Thus the fundamental counting principle applies and the two s can tog
chosen in 25 x 24 = 600 ways.
EXAMPLE 2. In how many ways can a family consisting ofa malher: wo .uir_l.f am:
e hters-in-law be a ged for a photograph satisfying the f 18 C
(i) There are only three chairs. So two persons have to stand behind.
(ii) The mother is to occupy the central chair ) X
(iii) Either both the daughters-in-law are to sit in the chairs or both of them are 1o

two de

stand behind. .
impos 3 s no
SOLUTION. No other conditions are u;:posg‘.c W:Q:t:ﬁnﬁ:yfz:lxmi;n 5
choice for the occupation of the central chair. ¢ S ion @
the end-chairs and in the decision of who stands whexje. Let ev:n:} E(J ben l:le) seating in
the chairs. There are four mutually exclusive ways: vic., (from left to rig
Daughter-in-law 1 and Daughter-in-law 2

or Daughter-in-law 2 and Daughter-in-law 1;
s Son | and Son 2;
= Son 2 and Son 1.
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The event F will be the allocation of standing positions for the remainsing gy,
persons (whoever they are). This can be done in 2 mutually exclusive ways, viz,,
Person | and Person 2;
Person 2 and Person 1.
Thus there are four choices for event £ and two for F. The actual handling of even
Fin terms of its two choices is independent of event E. So the two events together can
happen in 4 x 2 = 8 ways. These 8 ways are pictured in the following diagram.

or

S1 s2 s2 S1
D1 M D2 D1 M D2

St S2 S2 S
D2 M DI D2 M D1

. DI D2 D2 D1
4 SI M S2 S1 M S2

DI D2 D2 Di
S2 M S1 S2 M St

Fig. 9.2

EXAMPLE 3. A die is a six-faced cube, with the faces reading |, 2, 3, 4, 5 and 6.
When two dice are throw we add the digits they show on top and take that sum as the
nfsull fzf the throw. We ask the question. In how many different ways can the following
situation happen, viz.,
SOLUTION.  First throw of the 2 dice shows a total of 5;
and second throw of the 2 dice shows a total of 4.
Event E (the first throw resulting in 5) can happen in one of four ways, viz.,
3+42441:2+3: 1 +4.
Event F (the second throw resulting in 4) can happen in one of three ways, viz.,
242143341,
. The two events can together happen in 4 x 3 = |2 ways.
jote. We shal i i i
g l":: :cn:e ::e :binme:le :h;&oi:‘;iel::;:; :;d::cnr;tm. But we shall not hesitate
EXAMPLE 4. How many integers are there less than 1000, ending with 3, 6 or 97
SOLUTION. We shall consider three blank spaces (ordered from left to right) 10

T oooO

Fig.9.3
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than 1000. ’No-di_gu and one-digit numbers will have zeros in the first place and first
wo places respectively. The number zero is 000. So the 1000 numbers less than 1000
(including zero) are obtained by filling up the three blank spaces in all possible ways
(precisely, 10X 10x10= !OJ ways) by the digits 0, 1,2, 3, ..., 9. Since we want only
{hose numbers that are ending with 3, 6, or 9 we reason as follows. The first place has
all the 10 choices: the second place also has 10 choices; whereas the third place has
only 3 choices. viz.. 3, 6 and 9. Thus the three blank spaces can be filled with 10 x 10
x 3 = 300 ways. S0 300 is the answer to the problem.
EXAMPLE 5. A DNA chain is composed of basic building blocks in the form of four
chemicals. known by the symbols A, C, Tand G. Consider three-letter chains consisting
of these symbols (with or without repetitions). How many such chains are there?
The argument is the same as in the previous example and is standard for all such
situations. We imagine three blank spaces numbered 1, 2, 3 from left to right. It is left

L

Fig. 9.4

tous to fill the spaces with the symbols A, C, T, G. Space 1 can be filled up by any one
of the 4 letters and so in four ways. Since repetitions are allowed, the second space can
also be filled up in four ways. Thus the first two spaces can be filledupin4 x4 =16
ways by the fundamental principle of counting. Now the 3rd space can be filled up in
four ways. For each of the 16 ways of filling up the first two spaces there are four ways
of filling up the third space. So the fundamental principle applies. Thus the three spaces
can be filled up in 16 x 4 = 64 ways. Hence there are 64 three-letter DNA chains.

Incidentally, in the last two ples, we have i 1 ded the
principle of counting to more than 2 events, We can abstract this and record the principle
as follows.

Full of the fi | principle of ing: If Ey, Ey, ... Epare n

independent events and £, i = | to n can happen in one of m; mutually exclusive ways

then all the events £y, Ej, ..., E, can together happen in
my my ... m, Ways.

Note that ‘independent events’ means (in this large:

not affect any of the others. In the above example

filling up of the 2nd space, for instance, has nothin,

the first space or the third space.

We shall now continue with the last example, the DNA-chain, to talk about
PERMUTATIONS. A permutation of a set (X, X2, -+ X,} is a rearrangement of the
symbols. In other words we consider the original collection as our ordered arrangement

Xpy X2y woes Xn
(as if people are sitting in a line for a ph
rearrangement. Thus, in the case of the sy,
arrangements (4-letter DNA-chains)

ACTG, CAGT. TGCA, GTCA, .

[0}
r setup) the happening of one does
of the three-letter DNA-chain the
g to do with the filling up of either

otograph) and we now consider any possible
mbols A, C. T. G of the DNA-chain the
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The event F will be the all of standing positions for the remainsing two
persons (whoever they are). This can be done in 2 mutually exclusive ways. viz.,

or Person 2 and Person 1.

Thus there are four choices for event E and two for F. The actual handling of event
F in terms of its two choices is independent of event E. So the two events together can
happen in 4 x 2 = 8 ways. These 8 ways are pictured in the following diagram.

s1 s2 s2 s
DI M D2 D1 M D2
s1 s2 s2 si
D2 M DI D2 M DI
. DI D2 D2 DI
4 s M s2 si M s2
DI D2 o> DI
s2 M st s2 M st
Fig.9.2

EXAMPLE 3. A die is a six-faced cube, with the faces reading 1, 2, 3, 4, 5 and 6.
When two dice are throwa we add the digits they show on top and take that sum as the
result of the throw. We ask the question. In how many different ways can the following
situation happen, viz.,
SOLUTION.  First throw of the 2 dice shows a total of 5;
and second throw of the 2 dice shows a total of 4.
Event E (the first throw resulting in 5) can happen in one of four ways, viz.,
3+2:4+ ;24311 +4,
Event F (the second throw resulting in 4) can happen in one of three ways, viz..
2421433+
The two events can together happen in 4 x 3 = 12 ways.
Note. We shall not each time say that the two events are independent. But we shall not hesitate
to discuss the independence whenever there is likely to be a doubt.
EXAMPLE 4. How many integers are there less than 1000, ending with 3, 6 or 97
SOLUTION. We shall consider three blank spaces (ordered from left to right) 1o

represent numbers less D D D

Fig.9.3
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than 1000 Two-digit and one-digit numbers will have zeros in the first place and first
mpwmpecrivelyl_‘henumbnmisow.Smhclmmmd-lm
(Mmingm)mmd"yﬁm"!“PmﬂhrecNInlMinlﬂpm”hknys
(precisely. 10 10X 10=!O’WYS)WWdiEiBO.1.13.“..9.Sineewewluu!y
Itmem,,.,,hefsuman:endmgwill'n3.6.m'9v:vemu.mnnfollow:.'l‘heﬁr:lplmzhn
all the 10 choices: the second place also has lchnics;whaesd:thildplmh:
only 3 choices. viz., 3.6 and 9. Thus the three blank spaces can be filled with 10 x 10
x 3 =300 ways. So 300 is the answer to the problem.
EXAMPLE 5. A DNA chain is composed of basic building blocks in the form of four
chemicals, known by the symbols A, C, T'and G. Consider three-letter chai isting
of these symbols (with or without repetitions). How many such chains are there?
The argument is the same as in the previous example and is standard for all such
situations. We imagine three blank spaces numbered 1. 2, 3 from left to right. It is left

000

tous to fill the spaces with the symbols A, C. 7. G. Space 1 can be filled up by any one
of the 4 letters and so in four ways. Since repetitions are allowed, the second space can
also be filled up in four ways. Thus the first two spaces can be filledupin4 x4 =16
ways by the f 1 principle of ct ing. Now the 3rd space can be filled up in
four ways. For each of the 16 ways of filling up the first two spaces there are four ways
of filling up the third space. So the fundamental principle applies. Thus the three spaces
can be filled up in 16 x 4 = 64 ways. Hence there are 64 three-letter DNA chains.

Incidentally, in the last two les, we have intuitively ded the
principle of counting to more than 2 events. We can abstract this and record the principle
as follows.

Full of the fu iple of IfE\, E, .. E,aren
independent events and E,, i = | to n can happen in one of m; mutually exclusive ways
then all the events £,, E,, ..., E, can together happen in

my my ... m, ways. [¢V]
Note that ‘independent events’ means (in this larger setup) the happening of one does
not affect any of the others. In the above example of the three-letter DNA-chain the
filling up of the 2nd space, for instance, has nothing to do with the filling up of either
the first space or the third space.

We shall now continue with the last example, the DNA-chain, to talk about
PERMUTATIONS. A permutation of a set {xj, Xy, ..., %,} is a rearrangement of the
symbols. In other words we consider the original collection as our ordered

Xis X2 cons X
(as if people are sitting in a line for a photograph) and we now consider any possible
rearrangement. Thus, in the case of the symbols A, C. T, G of the DNA-chain the
amangements (4-letter DNA-chains)

ACTG, CAGT, TGCA, GTCA, ...
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and many more such rearrangements of all the symbols are just “permutations’ of the
four symbols. Note that we are not permitting any repetitions now. (The example of
the photograph situation will come in handy now). Given the four symbols we may
consider 3-permutations of the four symbols, by taking only 3 symbols out of the four
and ‘permuting’ them. In the case of the symbols A, C, 7, G of the DNA-chain, we wij|
now get 3-letter DNA-chains, but now without repetitions. Suppose we ask the question:
How many such are there?

‘We reason as follows. Start with three blank spaces numbered 1, 2. 3 from left 1o
right. Space 1 can be filled up by any one of the four symbols A, C, T, G, therefore
there are four ways of filling up the first space. But having filled up the first space,
there are only three symbols left — since we have used up one symbol (whatever that
be). So the 2nd space has only three choices. In other words, after filling up the first
space, there are only three ways of filling up the 2nd space. Note that we are here
talking of two events, viz.,

Event E: Filling up of space 1 by any one of A, C, 7. G (and therefore can happen
in any one of four ways); and

Event F:  After filling up the first space, the filling up of the 2nd space by any one

of the remaining 3 symbols (and therefore can happen in any one of
three ways).

These two events are independent; because the choice among the three ways of
happening of Event F is not dependent on Event E.
Note. This subtle point in the argument has to be carefully understood. In the definiton of
“Event F°, the words “after filling up the first space’ are important. Which three symbols
contribute to event F may be dependent on event E, but the event Fitself is the choice of one of
the three symbols constituting event F. This choice is not influenced by event £
So the two events can together happen in any one of 4 x 3 = 12 ways. Having filled up
the first two spaces by two of the symbols we have now to fill-up the third space by
any one of the remaining two symbols. The third event, call it event G, is therefore the
filling up (after the filling up of the first two spaces) of the 3rd space. This can happen
in any one of two ways. And as before the third event G is independent of the other two
events. So the three events can together happen in 4 x 3 x 2 = 24 ways. In other words
the three-letter DNA-chains, without repetitions, are 24 in number. Or. what is the
same thing, there are 24, 3-permutations of four symbols A, T, C, G. These are histed
below (in a systematic way):

ATC TCG CGA GAT

ACT TGC CAG GTA

ATG TCA CGT GAC

AGT TAC CTG GCA

ACG TGA CAT GTC

AGC TAG CIA GCT
‘The 3-permutations of four letters are also called ‘permutations of four letters taken
three at a time’.

Generalising the above argument we are able to prove the following Theorem:
Theorem 1. The number of permutations of n objects taken r at a time is

nn=-1)(n=-2)..(n-r+1). (4]
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" Proof. We shall imagine r ordered blank spaces that have to be filled up by any of n
Jetters (standing for the n objects) without repetitions.
The first space can be filled up by any one of the n letters and therefore in n ways.
Having filled up the first space. we may fill-up the 2nd space by any one of the remaining
n-1letters, i.e., in (n— 1) ways. Thus the first two spaces can together be filled up in
n (n—1) ways. Now there remain (n - 2) letters and so the filling up of the 3rd space
has (n - 2) choices. Thus, after the filling up of the first two spaces by two letters, the
third space can be filled up in (n - 2) ways. Hence the first three spaces can together be
filled up in and so on. When it is a question of the first 3 spaces the product is made up

n(n 1) (n - 2) ways

of 3 factors: n. = 1 and n — 2. So in the case of the number of ways of filling up the r
spaces, the product is made up of r factors

nn=-ln=-2 ..,n-(r-1).
Thus the required number of ways is
nn=-1)(n=-2)..(n-r+1). Q

Note. The formalisation of the above argument in the form of a rigorous proof using mathematical
induction is left as an exercise for the student.
NOTATION. The symbols
“P,.P(n.r).n,

are all used by mathematicians to denote the (above) number of permutations of n
things taken 7 at a time, The first of these is rather out of fashion. We shall therefore
use either P(n. r) or n, in the sequel.
Thus

Pinn=n=nn-1)(n-2)..(n-r+0. 3)
Tlustration. Going back to the previous Example we see that the number of three-
letter DNA-chains without repetitions is

P(4,3)=4y=4(@-1)(4-2)

=4x3x2=24.

Note that

Pn,ly=n

o Pn2y=nmn-1)
and so on. Also note that P (n, 0) does not make sense if we mean by it the number of
permutations of  things taking none at a time. But we interpret this as | since there are
no different ways of taking none of the things at a time. So P(n, 0) is stipulated as
equalto I.
The number P(n, ) is a very important number and we take it in the next paragraph.

NUMBER OF ALL PERMUTATIONS OF n OBJECTS
If we are interested in 4-letter DN A-chains (without repetitions) we are actually looking
for all permutations of four objects. taking all at a time.
This would be
P@,4)=4,=4@-1)E-2(4-3)
=4x3Ix2x1=24
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In general,
Pmy=n,=n(m-1(n-2)..(n—(n-1)
=nn-1)(n-2)..32.1
Thus we note that the number of all permutations of n symbols is
n(n-1)(n-2)..32.1.
This number is so often in use not only in counting problems but in other parts of
mathematics as well, that there is a separate symbol and nomenclature for it
Definition 1. The number
n(n-1)(n-2)..321
is called “Factorial n’ and is denoted by

|n orn!
The notation |n is rather old-fashioned. We shall ly be using n! for factorial
n.
Thus we have
Pin,n)=n,=n' )
Note that
=6
7! = 5040 and so on.
Also P(n,r)
=an-1)(n-2)...in-r+1)
_nln=1)(n=2)..(n—cr=)in=ryin—(r+1n.321
(n=ry(n=(r+1).32!
'
e 5)
Mlustration. P (7. 3) = 7.6.5
_ 7654321 _7'

T T3 &

We shall now give several examples of the use of the counting numbers P (n, r)
EXAMPLE 6. How many permutations are there of the letters of the word
“ENGLISH"?
SOLUTION. There are 7 letters. They can be permuted or rearranged in 7 (7.7) = 7-
= 7! ways. The answer is 5040.
EXAMPLE 7. How many of the permutations of the word “ENGLISH " will (1) start
with E ? (ii) end with H? (iii) start with E and end with H”
SOLUTION. Though this is not a direct application of the formula for n, as in the
previous example, a little study of the problem will show the connection.

In part (i) we want the permutation to start with *E” In other words, of the 7 blank
spaces we have to fill-up with the letters of the word “ENGLISH", the first space
allows no choice. It has to be filled up with ‘E” only. So let us place ‘£ in the fint
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lh,n-nsdwgm“nkflvhmlyﬁhusndm-esphnaﬁrh
mtmmb!mm6husmuwmdmbfnys1hﬁgm
1o this part is 6! = 720.

I part (ii) we have to keep *H in the last blank space. Again this leaves a remainder
of 6 letiers and 6 places for them 1o go into. this can be done in 6! = 720 ways. So the
mmmpannsalsono.

fn past (iii) we have to keep £ in the first place and ‘H m the last place. Having
done this. we are left with 5 letters and S spaces oaly:

DOo0oooon

5 Leters - S spaces
Fig.95

this can be done in 5! ways. Each such way of arranging these 5 letters along with ‘£
im the first place and "H 1n the last place gives us a required permutation for part (iii)
of the problem. Hence the answer to this part is §! = 120
EXAMPLE 2. (A second look). Going back to Example 2 we note that we can now
shorten the number of steps. The problem is a question of deciding on two mumally
exclusive alternauses as follows

Either Sons in the front row (and therefore the Daughters-in-law to occupy the

- 2nd row

Or Daughters-in-law in the front row (and therefore the sons to occupy the
2nd row

Taking alternative 1. we see that there are 2 chaurs for the 2 sons. So they can be seated
in2! =2 ways. For each such way of seaung the sons. the two daughters-in-law can be
positioned in the 2nd row. 1n the two standing places. i 2! = 2 ways. Thus the first
alternative can be accomplished 1n 2 x 2= 4 ways

By a similar argument. the 2nd alternative can be accomplished in 2 x 2 =4 ways.

The two alternatives are mutualiy exclusive. So the total number of ways of aranging
them all for the photograph 1s

= the no. of ways for Alternative |
+ the no. of ways for Alternative 2
=4+4=8.

Note 1. Note the disunction between ‘mutually exclusive events’ and ‘independent events®.
The latter gives the product rule as per the fundamental principle of counting. The former gives
tre addition rule as in the above example. In general the number of ways in which two mutually
exclusive events can happen (not together. but severally) is the sum of the ways in which each
of them can happen
Note 2. The working of Example 2 (Relook) above is simpler than that in the working of the
same example earlicr. This is because we have used the formula for the number of permutauions.
Al the same time we had also to use the fundamental principle of counting. In the earlier
working we had only the fundamental principle inourmmknawd.'hwedcvdw. op the
subject we will learn to use more and more formulae but learn also to combine them ingt :
and judiciously in order 1o reduce the actual burden of brute force calculation. It is therefore
Decessary in this parl of mathematics o keep working a large aumber of problems.
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EXAMPLE 8. How many ways are there to select an ordered set of 3 letters from g,
set{a b.c.d.e.fl. )
SOLUTION. This is equivalent to the number of 3-permutations from 6 objects. So j;
equals P (6, 3) = 6.5.4 = 120.
EXAMPLE 9. If all the permutations of the letters of the word “UNIVERSAL” are
ged (and numbered serially) in alphabetical order as in a dictionary,
(i) What is the first word? -

(if) What is the last word?

(iif) How many words are there under each letter?

(iv) What is the serial number of the word: RIVENSULA? UNIVERSAL?
SOLUTION. (i) AEILNRSUYV is the first word.

(if) The reverse of the above; viz., VUSRNLIEA is the last word.

(i) 8! = 40320; because we can keep one letter fixed (i.c., as the first letter of the
word) and permute only the remaining 8 letters.

(iv) To calculate the serial number of the word RIVENSULA in the alphabetical
order, we have 10 systematically exhaust the words that go before he specific
word. This is done in the following table which is self explanatory.

TABLE OF COUNTING THE WORDS
WHICH APPEAR BEFORE RIVENSULA

¥ iﬂ% ", Count for totalling

A 8! 40320

E 8! 40320

1 8! 40320

L 8! 40320

N 8! 40320
RA 7 5040

. RE 7 5040
RIA 6! 720
RIE 6! 720
RIL 6 720
RIN 6! 720
RIU ) 6! 720
RIVA S 120
RIVEA  ~ a 2
RIVEL, 4 24
RIVENA 3 6
RIVENL 3 -6
RIVENSA 2 2
RIVENSL 2! 2
RIVENSUA I 1

2,16,185 j

[Fiamnons b Covonumos. -

The next word after the above list is RIVENSULA. So the serial number required is
2,16816.

Calculation of the serial number of the word ‘UNIVERSAL is left as an exercise.
The answer is: 3.04,481.
EXAMPLE 10. Consider the set (a, b, c, d, e}. How many three-letter words can be
made out of them. with or without meaning ? How many of these will have at least one
vowel in them? Answer these questions for both cases when repetitions of letters are
allowed and when repetitions of letters are not allowed?
SOLUTION. Case 1. Repetitions allowed.

Number of all three-letter words = 5 x 5 x 5 = 125: because each space in the
three-letter word can be filled up by any of the five letters.

To count the number of such words with vowels in them, let us calculate the
complementary number, viz., the number of words without any vowel in them.

This number is 3 x 3 x 3 = 27, because each blank space can be filled up only by
b, ¢ or d. Hence the number of words which contain at least one vowel, is 125 -27 = 98.
Case 2. Repetitions not allowed.

Number of such 3-letter words

= Number of 3-permutations of 5 objects
=P[5,3)=543=60.

Number of these words which have at least a vowel in them = 60 - P (3, 3) =
60-6=54.
EXAMPLE 11. In how many ways can 3 objects be distributed in S boxes so that no
two objects go to the same box? How will the answer change if there is no restrictive
condition for the distribution? Generalise this problem to the situation of n objects
and m boxes.
SOLUTION. Each distribution of 3 objects into 5 boxes with the restrictive condition,
may be considered as a 3-permutation of 5 symbols thus: Call the objects a, b, c. Call
the boxes By, By. By, By, Bs.

Suppose
Object a goes into By
Object b goes into B,
Object ¢ goes into By,
Let us say that per ion By B, By rep this distrib C let
By By By be a 3-per ion. The di ibution shall be:

Object a goes into By
Object b goes into By
Object ¢ goes into Bs.
Thus there is a | - | correspond between di of 3 objects into 5 boxes
with the condition stated in the problem and 3-permutations of 5 symbols. Therefore
the required, number of such distributions is P (5., 3) = 5.4.3 = 60.
In the case of n objects and m boxes the answer is

Pimn)sm(m=1)..(m=n+1).
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¥ doe sestrictive condition is selaxed. the problem becomes casy. For cach objey
there are five choices and so the answer is 5 x 5 x 5 = 125. In the peneral case the
anewer is m X m X . % m (p times) ie., nf".
EXAMPLE 12. in how many ways can the letiers of the word MOM be permugeq
among themselves 7
SOLUTION. The nember of letiers to be permuted appears 10 be three. The temptation
i 10 say that the answer is 3! = 6. But note that the letiers are M, M and O and 50 one
Jetter is repeated. In other words there is onc letier appeanng twice and another letier
asppearing once. Esseatially there are only 2 letters to be permuted. The answer
however is not 2! = 2.
In order 10 have 2 proper grasp of the nature of the problem. let us
distingmish the two M's in the problem by M, and M. Then the letiers M. M- and )
can be permusted in the following six ways.

MM0 oMM M08
MM,0 oMM, MM,

H we identify M, and M; and call it M we have only the following:
MMO . OHM . MOM

Thus whea M, and M, are distinct, there are six permutations; when M. and M- are noe
dastinct there are only 3 permutations. There 1s 2 redocton of the number by a factor of
2. This reduction happens as follow

- Whenever M, and M; occupy two fixed positions. they themseives can be permuted
among themselves 1o give 2! = 2 permutations, This number 2! 1y what z1ves rise 1o the
number 2 1n the 2ad cotumn of the Table above. Since each such pair of permutations
coalesce into a single permutation as M, coincides with M., thus giving rise 1 | in the
3rd cotumn, the factor of 1/2 appears as the factor of reduction from the “distinct case
to the "nondistinct” case. In the general case, the sitaation is going 1o be simiiar 2 we
shall see presently.

EXAMPLE 13. /n how many ways cun the letters of the word INDIA be permuted
among themselves ?
SOLUTION. Note that the letier | appean twice among the five leticrs. S0 1f we
consider the two I's s /; and 1, the total number of permutations would be §° = 120 Of
these every pair of permutations where /, and /; have imerchanged their postions.
wuﬂbgcmum ion when we write / for both 1, and /- Thus there 15
_ areduction by a factor of 1/2 from 120, The answer 1 1/2 x (120) = 60
Pfouﬂhfmlflhaﬂndly 172!, The 2! comes from the fact that once the
positions of /; and 1, are fixed they can be permuted among themselves in 2! ways.
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EXAMPLE 14. In how many ways can the letiers of the word DADDY be permuted
gmong themseives ?
Here three letiers are alike: viz. D. D and D. Thus of the 120 permutations
-ﬁmum' have been there with D;. D,, Dy, Y and A every set of
winch only permute D, D, and D; among themselves will coalesce into
3 sangle permutation when D, Ds. D become identical.
Thes for instance. the six permutations
D,D;AD; Y
Dy D;AD> ¥
D:DAD,Y
D-D-AD,Y
D:D.AD.Y
DyD-AD. ¥
coalesce 1010 3 single permutation DDADY. The reduction therefore is by a factor of

13", Hence the answer 15 1/6 x (120) = 20)

We can now generalyse the argument of the last three examples and prove the
followang i neoreT
Theorem 2.1/ n < are 10 be permuted and of these n things, if n things are alike
of ome kind 2nd the remaining n- things are alike of a different kind, then the number
of destinct permutaions of the n thngs @5

"

5 (©)
n.r
Preof. Taking an' one such required permutation and without altering the positions of
the n things 1 ept 0 & per among th Ives and si ing the
B- things 2mon: emseives, we can produce n,! n,! permutations. These latter are
commted s Qisunct 10 ne count of the total on ! permutations of a distinct thungs.
They are counted a- Une same when we identify the n, things among themselves and
the n- things 2 7.2 thermsely s This is like identifying the D,. D,, D; among themselves
8 the tast cramp.2 Henoe e total number of required type of permutations is
. Q
n'in'
and thes compicetes the proof of the Theorem
Theorem 2 can be exiended to accommodate
n. things are alike of one kind
- things are alike of another kiné

n, things are alike of another kind
Here the final number would be

—_— (where my v My« .. +Mg=n) . )
n'‘nl.n,’

Remark. This is called the multinomial coefficient.

In Ex. 14.n =3, m=1,ny=1andn=5.

Ex 13,m=2m=1n=1.n=1andn=5.
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EXAMPLE 15. In two-dimensional space the point (a, b) is said to be a lattice point if
a, b are integers. Two lattice points (a. b) and (c. d) are neighbours if they agree in one
of the coordinates and differ in the other coordinate by 1. Every pair of neighbours js
connected by a directed line with the direction coinciding with the positive direction
of the coordinate axis to which it is parallel. In how many ways can one move from
(0,0) 10 (a, b) along the directed paths ?

To move from (0, 0) to (a. b) one has 10 move through a steps of 1 unit each along
the x-axis and b steps of 1 unit each along the y-axis. Each such move can be written as
a permutation

XXYXYY X XY
where there arc a ‘x’s and b y's. Here each x represents a |-unit move along the x-axis
and y represents a 1-unit move along the y-axis. Thus there are as many moves from
(0, 0) to (a, b) as there are permutations of the above kind. These permutations are
nothing put permutations of (a + b) things, ‘a” of which are of one kind (viz., they
are x) and b of which are of a different kine (viz., they are y). So the required number
is the number of all such permutations.

(a+b)!

a'b!
EXAMPLE 16. Show that (6!)*' is a divisor of (6!)! (Recall Problem No. 27 at the end
of Chapter 2).
SOLUTION. Consider (6!) objects which are grouped into 5! groups, each group
containing 6 objects. Note that 6 x 5! = 6!. Let each group be considered a separate
kind, but the members within the group as identical kind. Then if we look at permutation
of the 6! objects, since it is divided into 5! groups of different kinds, each containing 6
objects of the same kind the total number of permutations is
(6!)!

6!6!..6!
there being 5! factors in the denominator, each equal to 6!. This number is therefore

ot

6"
Since this counts the number of permutations of the 6! objects, it is an integer. This
incidentally means (6!)*' is a divisor of (6!)!
EXAMPLE 17. In how many ways can you permute the letters of the word
VIVEKANANDA?
SOLUTION. Such permutations of the word are called anagrams of the word

Thereare 2 V's,3A’s2 N'sand 1/, |E, 1K, 1D.

So the answer is —— y
21312!

This is

=11.109.8.7.6.5.
Imp Note R g E 9.1 -
At this point we close this section on permutations. In the manner of the precedence
set up in the earlier chapters a set of problems under the heading Exercise 9.1 would
havg appeared here. But the subject of Combinations, which is the topic of the next
section, is so much interwoven with the topic of Permutations that a student, when
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nted with p in this part of Math bas usually a hard time deciding
confro! he has to do Permutations or Combinations. Keeping {lmhmmn::: we have
wransferred all problems which would have normally appeared here to Exercise 9.2 at
the end of Section 9.2. So the Exercise 9.1 for the student reader at this point is to
move to Exercise 9.2 and pick up the problems which deal only with permutations and
work them! This sorting out is itself an educative challenge.

9.2 COMBINATIONS

So far we have always concerned ourselves with p — de
order in which the symbols or the objects appeared in our selecti d. Taking
the example of the 3-letter DNA-chain (without repetition), we see that there are four

bases:

ATC&G
from which we have to take three letters and arrange them. We know the answer is 24
(from page 363). But let us do a slow-motion experiment now. Take any three letters
out of the four. Suppose they are A, 7. C. These three letters can be permuted among
themselves, in 3! = 6 ways. The actual permutations are:
ATCACT,TCA,TAC,CAT.CTA.
These six are the only three-letter DNA chains (without repetitions) if the letters are
restricted to A, T and C.
If we take another selscticn of three bases, say A, T and G, we have similarly six
permutations of the three letters:
ATG.AGT,TGA.TAG,GAT,GTA.
Again take still another selection: say, A, C and G. These three will give rise to six
permutations:
ACG,AGC,CGA,CAG,GAC,GCA.
One more selection of three letters is possible: T, C, G. These three will give the following
six permutations among themselves:
TCG.TGC.CGT.CTG,GTC.GCT.
A little thinking and experimentation will tell us that there are no more selections of
three letters from A, 7, C. G. In fact one way to have a confirmation of this is to argue
as follows. If we have to select three letters out of four, each such selection will omit
one letter: thus
The selection {A, T and C) omits G;
the selection (A, T and G} omits C;
the selection (A, C and G) omits T;
and the selection {7, C and G} omits A.
There is no other way to omit a letter and so there are no other 3-letter selections. Thus
there are four 3-letter selections viz.. {4, T. C): (A, T, G); {A, C. G} and {T, C, G}.
Each gives rise (o six 3-letter permutations and this adds up to 24 3-letter
permutations. In other words the 24 3-letter permutations partitions into 4 groups.
Each group contains 6 permutations of the same three letters.
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Suppose the question was: Given four letters A, 7, C and G how many 3-letter
selections can be made? Here selection (or combination) means, the order in which the
letters appear is irrelevant to the issue. Of course we know the answer is 4, but let ys
not jump too soon to the answer. We know there are 24 3-letter permutations because
itis just 43 =4.3.2 = 24. We know also each 3-letter will give 63 ions,
because it is just 35 = 3! = 3.2.1 = 6. So the set of 24 permutations will partition itse]f
into a certain number of groups, each group containing 6 permutations (of the same
3 letters) and cach group arises from a selection of three letters. This argument leads
us to conclude that there are 24 + 6 = 4 such selections! Consult the following

isation of the 24 p ions in order to d the above
TABLE OF 24 3-LETTER PERMUTATIONS ORGANISED
INTO GROUPS CONTAINING SAME THREE LETTERS

ATC ATG ACG C6
TAC TAG CAG CTG
ACT AGT AGC TGC
CAT GAT GAC GTC
TCA TGA CGA cGT
CTA GTA GCA GCT

Thus we may say, the number of combinations (= selections) of 4 letters taken 3 at

atime is
@, 432 _,
@y 821

‘We shall quickly discuss one more illustration before we take up the general case of
r-letter combinations out of 7 letters. Let r =2 and n = 5. We are interested in selecting
2 objects from a set of 5 objects. Just as a concrete example, consider S Tennis players
out of which we have to select two, say, for a demonstration match. In how many ways
can this be done?

Let the five players be named A, B, C, D and E. If two players are to be selected and
the order mattered, then the answer would be

5;=54=20.
But in this problem the order does not matier. Each selection of a pair of players, say,
A and C would have been counted in the 20 above, once as AC and once again as CA
that is, two times. This number 2 is actually the number of permutations of the two
letters (or players) among themselves: so it is actually 2, = 2! = 2. So the number of
2-player selections would be 20 + 2 = 10. These are clearly:
AB,AC, AD, AE, BC, BD, BE, CD, CE and DE.
The passage to the general case is clear now. We formalise this in the following theorem
and its proof.
Theorem 3. The number of combinations of # symbols taken r at a time is
L)
T

Proof. Combination means a selection in which order does not matter. On the other
hand, if order the ing ordered sek is called a p i

(8)

F ‘ 369

The nu;bcr of such per ions, namely r- of n letters, is already
known 0o

n!
n=—
(n=r)!
In this count of the total number of r-permutations, each r-selection is counted r!
imes, because each i i n ions among th Sothe
1 number of r-selections is the above number divided by r!; in other words, it
equals

A n!
5 riin—r)! a

Notation. This number is important for many calculations. Itis denoted by the symbol

(’,') or"C,

We shall use the former symbol always. Thus,

n n!
[r) T orin=r) (9)

Niustrations

(:)=i _ 54321 10

\2) 213 21321

EXAMPLE 1. How many diagonals are there in a convex seven-sided polygon (called
a heptagon)? Note that a diagonal is a line joining any two vertices which are not
adjacent.

SOLUTION. Two vertices can be selected from seven vertices in

7 N
= (Zj=ﬁ 21 ways

Each such pair will give a line. but not always a diagonal since the pair could be a pair
of adjacent vertices. But if they are adjacent vertices, the resulting line is actually a
side of the polygon. There are clearly 7 such sides. The remaining lines must be
diagonals. Thus there are 21 — 7 = 14 diagonals.
EXAMPLE 2. In how many ways can we form a committee of three from a set of 10
men and 8 women, such that our committee consists of at least one woman? .
SOLUTION. Whenever the requirement is that there should be at least something
happening, it is a piece of strategy to calculate the number associated with the
complementary happening. Here, for example, we want at least one woman member
in our committee. What if we calculated the number of ways in which we could form
a committee with no woman member in it? This means all the 3 ngmba's have to
come from the set of 10 men only. Out of 10 men we can select three in

((9)o 0t 1002

3) o123

Ways. So this is the complementary number. This has to be subtracted from the ;:il
number of ways in which a committee of three can be formed, v{n(hnulb:njmein
Woman restriction. There are 18 people. We want to select three. This can
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18) _ 181716

( 3 ) i
ways. Thus the required number is 816 - 120 = 696. This is the number of ways
which a 3-member committee can be formed from 10 men and 8 women, with at leas
one woman member in the committee. .

An alternative method: In this method there is no ingenuity required. It is 4
straightforward brute-force calculation. We want a three-member committee with gt
least one woman. So let us calculate

(i) the number of ways in which 3-member committees could be formed with
precisely one woman member in it;

(ii) the case of 2 in the i and
(iii) the case of 3. bers (i.e., all and then add the
three numbers.

Answer to (i) is obtained as follows. To select one woman, we have to do it from the

1

set of 8 women. This can be done in (
ini bers of the ittee we have to select 2 men from the 10 men. This

8) = 8 ways. Having done this, to get the two

can be done in [‘0) = 109 =45 ways.
2) 12

These two selections (of men on the one side and the woman on the other side) are
independent. So they can together be done, that is, the 3-member commttee (with
precisely one woman) can be formed in 8 x 45 = 360 ways.

Answer to (if) is obtained by selecting 2 women out of the eight available — this
8

can be done in [2

):?—'27— =28 ways and then by selecting 1 man from the set of
10 men — this can be done in (IIOJ =10 ways — and then combining the two; and
this can be done in 28 x 10 = 280 ways. So answer to (ii) is 280.

Answer to (iif) is easy. We want an all thi ber i There are

8 women available. So this can be done in = (:8;] 828 =56 ways.

123
Adding the three numbers, we get the required number as
360 + 280 + 56 = 696.
EXAMPLE 3. Consider the set of five digits
(1,3,579)

A 3-permutation of this setis said to be ‘increasing"if for every digit in the permutation,
the succeeding digit is bigger. How many 3-permutations are ‘increasing’?
SOLUTION. For instance 3 5 9 is an increasing permutation; whereas § 3 7 is not.
_Notc lh.:t for every 3 digits out of the given set, there is only one permutation which is
increasing. In other words there are precisely as many increasing permutations as there

sk wo Commrs P

are subsets of 3 elements of the given set (1,3, 5,7, 9}. The number of such 5 subsets

js just the number of combinations taken 3 at a time. So it is = G) =10.

These 10 increasing permutations are listed below:
135;137;139;157;159;179;359:379.

Note. The method used in the above example is a fundamental characteristic of counting

Jems. Instead of counting the members of a set we count the members of a second
set — which we know must have the same number of elements as the first set. The argument is
more or less of the following type. Suppose we want to count the spokes of a wheel where each
spokeis2 radial line going from the centre of the wheel to a point in the circumference. Instead
of counting the spokes we count the end-points (of the spokes) on the circumference. This
works out because there is a one-one correspondence between the set of all the spokes and the
set of all the end points. For cach spoke there is an end point and for cach end-point there is a
spoke. See Fig. 9.6. This kind of matching between two sets is called a one-one correspondence
between them. Whenever two sets are in one-one correspondence, they
have the same number of elements. Instead of counting one of them we
may count the other This is what we did in the example. The set of
increasing 3-permutations of {1, 3.5, 7. 9} and the set of 3-subsets of
{1.3,5,7.9) arc in one-one correspondence. Therefore we counted the
latter in order to count the former. In Mathematics counting problems
very often use this strategy. In facta good lot of ingenuity may be needed
16 construct a suitable set, which is 1n one-one correspondence with the
set that we have to count, and which is comparatively easier to count. Fig. 9.6
The next example illustrates such an ingenuity
EXAMPLE 4. Ten books are arranged in a line on a bookshelf. In how many ways
can we select four books such that no two consecutive books from the shelf are chosen?
SOLUTION. Number the books as

1,2,3,4,5,6.7.8.9, 10.

We are going (o ingeniously construct a new set which matches in a one-one manner
with the set of all required selections.

Suppose one such selection is:
A=11,3,7.9}).
We associate with this selection, the following binary sequence of 10 digits:
A’:1010001010
The construction of this sequence follows the simple rule: If the digit i appears in A,
make the i digit in A’ equal to 1, otherwise the i digit shall be zero. In the above
selection, 1, 3, 7 and 9 appear in A. Therefore the 1st, 3rd, 7th and 9th digits in the
10-digit sequence A" will be I's and all others, are zero. This rule produces a unique
10-digit sequence A’ corresponding to A. Note that A’ does not have two I's consecutive.
This is because the selection A does not have consecutive digits in it; and this is in
Ppursuance of the very requi of selection that no two ive books are
chosen from the shelf. Thus, to each sclection of books satisfying the requirement
there is a 10-digit sequence of six 0's and four I's with the property that two I’s do not
appear together.
Convcncly if we had a 10-digit sequence of six 0's and four I's with the property
that two 1's do not appear together, e.g..
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the sequence: 0100100101

we can associate with this, umi a of books of the required kind. ¢.2. The
i ing to the above seq will be:
(2.5,8,10}.
It is clear thus there is a one-one between the set of book selections

required and the set of 10-digit binary sequences of six 0's and four |'s with the additional
property that no two I's appear together. So we now count the latter set!

Even for this we need to do a little artifice. (Reader. notice that in this subject tricks
and artifices abound; that is the beauty and challenge of this branch of Mathematics!).
Weneed!ooounlIMp‘lbimseqmmwiﬂnsixO‘smdfwl‘s.mzzmsmy
appear in succession but the ones should not. So we first place the six zeros in a line,
with an empty space between each successive pair of zeroes and a space each at the
beginning and at the end, thus:

.0.0.0.0.0.0.
Here cach dot represents a vacant space. We may fill up four of these vacant spaces by
1's. If we ignore the remaininig vacant spaces, this will give us a 10-digit sequence of
the required variety: e.g.

1010000101
How many such sequences can be formed?
Cleu"ly as many as there are ways in which we can choose 4 vacant spaces from the

7 vacant spaces. This number we know is (Z]:mdmisisu:answcrmlhcpoblcm viz,

(7]=755.4 ~135.
4) 1234
Just for the sake of completeness and for purposes of clarity, we present below the
35 10-digit and the ing four-book selecti
(In this table, ‘X" denotes the number ten: *10°)

1010101000 1357 1000100101 158X
1010100100 1358 1000010101 168X
1010100010 1359 0101010100 2468
1010100001 % 135X 0101010010 2469
1010010100 . 1368 0101010001 246X
1010010010 1369 0101001010 2479
1010010001 136X 0101001001 247X
1010001010 1379 0101000101 248X
1010001001 137X 0100101010 2579
1010000101 - 138X 0100101001 257X
1001010100 1468 0100100101 258X
1001010010 1469 0100010101 268X
1001010001 146X 0010101010 3579
1001001010 1479 0010101001 357X
1001001001 147X 0010100101 358X
1001000101 148X 0010010101 368X
1000101010 1579 0001010101 468X

1000101001 157X

-
_ 373

EXAMPLE 5, How many distinct solutions are there in non-negative integers of

o xX+y+z+w=10 '

the variables x. y, z w?
SOLUTION. This is another problem where the same strategy as in the previous one
isgoing 0 be useful. In order to motivate the working, let us take a simpler illustration
of the same type of problem. Consider the equation
x+y=S5.

We can tabulate the distinct solutions of this equation as follows:

ok

The third column of the above table lists a binary sequence of 5 1I's and one zero, each

ponding to one of the solutions in a unique way. The interpretation (and therefore
die ) of the binary is clear. The ‘zero’ separates the x value and
yvalue. The number of I's that appear to the left of the zero represents the x value and
the number of I's that appear to the right of the zero represents the y value. There are
20 more solutions as can be seen from the listing. The set of solutions is in 1 -1
correspondence with the set of permutations of five I's and one zero. This number is
the multinomial coefficient

6!
s
which simplifies to 6. There are precisely 6 solutions to the equation x +y =5 in non-
negative integers. )
Now taking the cue from this illustration, to count the solutions in non-negative
integers of
x+y+z+w=10
we count the permutations of ten 1's and three zeros. The number three is because we
have to separate x and y, y and z and finally zand w each by a zero; thus,
1101111011110
would mean
x=2,y=4z=4andw=0
and 50 on. The number of such permutations is
EE
1013!
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which is equal to
Ba21L; g6
This is therefore the number of distinct solutions in non-negative integers of
x+y+z+w=10.
Generalising this to x; + x; + ... + x, = N we record the generalisation as:
‘The number of non-negative integer solutions of x; + x; + ... + X, = N'is.

N+n-1
( n-1

See also Example 12.
EXAMPLE 6. In how many ways can four non-distinct objects be distributed into six
distinct boxes, so that no box may contain more than one object? Generalise the situation
for n objects with m boxes.
SOLUTION. First let us make clear what ‘distinct’ and ‘non-distinct’ mean. ‘Distinct
boxes’ means the boxes can each be named distinctly from every other box. In other
words there are six entities namely

Box A, Box B, Box C, Box D, Box E and Box F.
Non-distinct objects means we know only there are so many objects (in this case, four)
but we cannot distinguish between them. In other words, the objects are
indistinguishable — they carry no numbers, no names, no labels.

Now let us first attempt the simpler case when the four objects are distinct (1. 2, 3, 4)
and the six boxes are distinct (say A, B, C, D, E and F). This is the case of Example 11
of the previous section. We know that each such distribution of 4 objects into 6 boxes
can be matched with a 4 permutation of the 6 boxes A, B, C, D, E, F. So there are

precisely P(6,4) = 360 such distributions.

2!

Here, for instance, a distribution, say,
1—B
2—A
3—F
4—D
gives the 4-permutation B A F D of the six symbols A, B, C, D, E, F.

Now when we change the problem from “distinct objects’ to ‘non-distinct objects’,
then it is not relevant to know what object goes into a box; it is only relevant to know
whether an object goes into the box or not. Thus, if B, A, F, D are the boxes in which
the objects go, no more information is needed nor is possible since the objects are
?ndisu‘nguishabl& The fact lh.al B, A, F, Dare the four boxes chosen is the only relevant

n Thus each ‘ u ponds to a choice of four boxes out of the
six. There are as many distributions therefore as there are choices of four boxes out of

the six. So the number of distributions is (g) which is 15.

[Pamaanons w0 Cousmanons

In general, if n disti
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into m boxes such that no box
has more than one object, the number of distributions is (’:) (Caution: m 2 n).

objects are distrib

EXAMPLE 7. Show that

(-.)

SOLUTION. Method 1. [:) = is the number of selections of r things out of n things.

To select r things is the same as discarding n — r things. For each selection of 7 things
there is a discarding of the remaining n — r things. The number of ways in which we

can discard 7 - r things is (n '_' ']_

Since the set of selections of r things and the set of discardings of n - r things are in
1 -1 correspondence, the two numbers above are equal.
Method 2.

n n!
= — (12
["] ri(n=r)! )
and L n ]_ n' 5 n!
n=r) (m=nin-=(-r)! (a=r)'r!

Hence the two numbers are equal.
EXAMPLE 8. Show that

(R

2n) .
As a corollary, show that n )i always even.

(1sr<n).

SOLUTION. Method 1. (:) is the number of combinations of n objects taken rata
time,

Fix an object, say a, out of the n obects. All the (") combinations can be grouped into
r

() those that contain the object a and (ii) those that do not contain a.
To count the former, we have object a and we need only to choose (r— 1) from the

Temaining (n - 1). This number is therefore (’: - :)

To count (ii), we omit object a, and now we need to choose r objects from the

Temaining (n - 1). So this number is (" = ‘].
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Hence the equation follows. The corollary follows by replacing by n and n by 2n,
Method 2. R.H.S.
_ (n=1! (n=1!
(r=Dn=1=r+1)! rlin=1-r)!

- (a1 [1¢1]
(r=Dn=r=-0!|n-r r
(n—1)! (r+n-r)
(r-l)!(n-r—l)![(n—r)(r)
o nin—1)!
T Hr=Din=r)(n-r-1)

__n _(n]
T rn-nt \r

EXAMPLE 9. Show that

n\(r\_(n)(n-k

0 il 0 wlsSksr<n.
SOLUTION. Method 1. L.H.S.

n! !
=<
rl(n=r)! kir-k)!
n!
T (n=nlr -kt
- n! (n—k)!
k! (n=k)! (n=r)(r-k)!

(n] (n—k)!
O ) T ()| S
k)" (r=k)n =k —(r—kp!

_(n)(n-k
kNr-k)°
Method 2. The proof will be clear if we first illustrate with, say, n =6, 7 =5 and k = 3.
Let {a, b, ¢, d, e, f} be the 6-element set. How many 5-subsets are there? There are

[g) = 6 of them. From each of this six 5-subsets, suppose we form 3-subsets. Each

5-subset will give rise to G]:(;) = 10 3-subsets.

If we write them all down we thus have 6 x 10 = 60 3-subsets. But the same 3-subset
will come from different 5-subsets. viz., {bcd), for instance, will come, once from
{b, ¢, d, e, f) once from (a, b, c, d, e) and once from {a, b, ¢, d, f).

To make this calculation exact, we see that each 3-subset comes from as many
5-subsets as there are ways of choosing the ining 2 el from the i
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s i3
¢-3=3 clements. This is (2) = 3. Thus each 3-subset occurs 3 times in this count
6
There are (3 =20 3-subsets. So the total count of all 3-subsets written down (with
ﬂ"iﬁoﬂs) in the above listing is 20 x 3 = 60.
Now let us take up the general case. Choose an r-subset. This can be done in ("]
ways. From each r-subset choose as many k-set as possible. £

This can be done in [;) ways. Thus a &-set can be arrived at by any one of (n] [;)
r

nysm same count can be had by looking at a single k-set which can be obtained in one”
of (") ways. But each of these may have come from an r-set, which can be obtained
k

i,("_:) ways of choosing the ining r - k el from the ining n - k
r-
elements. So the above count of all k-sets written down is (" » :) .Hence the result.
r-
EXMAPLE 10. (Vandermonde’s Identity) i
n+m)_(n\(m\, (n)[ m n\( m n\(m
roe ()L G ) o )

SOLUTION. Let there be n boys and m girls. We want to choose a team of r persons,
the boy-girl proportion allowed to be all possible cases. The r persons can be chosen

from n + m persons in L" : "') ways. But we can look at it from the boy-girl proportion

angle. The following table exhibits all possible boy-girl distributions and the
corresponding number of ways in which a choice can be made according to that
distribution. 2

Boy Girl No. of ways

0 G
. I )

™
<
|

()

S e ()

Heace the equality required!
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EXAMPLE 11. Show that
. n+l S (A n+r+l
0 1 r:) r
SOLUTION. Method 1. From Example 8 we have
(n+r+l] (n+r) (n+r)
= +
r r r-1
By the same rule, again,
n+r)_(n+r-1 7 n+r-1
r=1)" r=-1 r-2
n+r=1\_(n+r-2 3 n+r-3
r=2 )7 r-2 r-3

Adding, we get
(n+r+l) (n+r] (n+r—l) (n-vr—z)
= + +
r r r-1 r=2
n+l n : n)_(n+1) _
+...+( 1 J+(°J. since (OJ_( 0 ]—l.

Method 2 Fix any r of the n + r + 1 objects given. Call them A, A,, ..., A,, Now our
choice of r objects from the 7 +  + 1 objects may or may not contain any or all of the
set {Ay, Ay, ..., A,}. We arc going to exhaust all possibilities.
Case 1. It does not contain A;.

This will happen in [n:—r] ways for the r things have to be chosen from the
remaining 7 + r things.
Case 2. It contains A, but does not contain A,.

Bt . (n+r=1 ¢ 4
This will happen in oy ) Vays because, having chosen A, and rejected A, we

have only n + r— 1 things to choose from and we need only r - 1.
Case 3. It contains A, A; but does not contain As.

This will happen in (”+’;2J ways.
i
Case 4 ..etc.
Case r It contains A, A,, ...A, _, but does not contain A,

--!E-!I

. +1
This will happen in (" : ) ways.
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Case(r+ D1t contains Ay, Az ... A,.

This will happen in (8) ways.

m QT
EXAMPLE 12. In how many ways can we choose 6 candies from 8 brands that are
available? (It is assumed here that you can choose the same brand repeatedly).
Generalise.

SOLUTION. This is a problem of combi with it llowed-al lled
redundant combinations. We choose 6 brands from 8 brands, but now repetitions are

allowed. So the answer is not (2) . For example you can choose all the 6 candidates

from the same brand. Let us call the brands

B, B, By By B Bg By By
sonow it is a question of how many we choose of brand B, how many of brand B, and
so on. Let us represent this symbolically as

5 T [ CE [ IR A

(n 2) 3) 8)
Here the eight brands are denoted as 8 boxes. If for instance, our choice is

B By By B, B, B,
we write this as

lxxllxlllxxx! &
Each vertical separator stands for the separation between one brand and the next brand.
The no. of x's says how many we have taken of that brand. An arrangement of 6 x’s
and 7 vertical separators as in (*) says precisely what our choice is. In this case it says
that B, is not chosen, B, is chosen twice, By is not chosen, By is chosen once, Bs, Bg are
not chosen, B; is chosen three times and By is not chosen.
Soitis B, B, B, By By B;. So now it is up to us to count in how many ways we can have
6.x's and 7 separators arranged in a line. This means we have 13 spaces in which we
can put the seven vertical separators anywhere we like and fill up the rest of the spaces

with x's. This can be done in (173) ways.

The answer is therfore (163) which is the same as (173)

G lisi i i i iti have spaces for
this to r- of n things with repetitions, we b:
the r things chosen and the 1 — 1 vertical separators between the n objects. Thus we

Ve n -~ | + r entities. We have to select n — | entities as spaces for the scparators.
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So the answer is ("::I‘) which is the same as ("*:").(Why?). This is the

same as the number of non-negative integer solutions 6l'x, +X4 ...+, =r (See(10)
at the end of Example 5).

S
which are indistinguishable among
SOLUTION. The dice are i
2. The different possible throws are:

1,1

1,2 2,2

153 2,3 3.3

1,4 2,4 3,4 4.4

1;8 2,5 3,5 4,5 55

1,6 2,6 3,6 4.6 56 6,6

EXAMPLE 13. Show that (" i 5) distinct throws are possible with a throw of n dice

Let us und

d the problem with n =

The total number is 21 which is equal to (2;5). The fact that the dice are

indistinguistable expresses itself thus. It is not a question of which the shows up what
number. It is only a question of what numbers are shown up on top. The numbers on
the dice are 1, 2,3,4, 5, 6. These numbers show up in the n dice in varous combinations
with repetitions. So we are now looking at combinations of 6 things taken » at a time
with it i uptoa of n times. The answer to Example 12

shows this number to be [6'”'") which is the same as (";SJ.
n

EXAMPLE 14. How many distributions are possible of 5 indistinguishable ( = non-
distinct) objects into 7 distinct boxes if there is no restriction on how many each box
may contain. Generalise to n indistinguishable objects into m distinct hoxes.
SOLUTION. Since the boxes are distinct, we may name them

By, By, By, By, Bs. By, B;.

Now the objects arc indistinguishable. So it is only a question of how many go into
each box. So we may proceed exactly as in Example 12. In fact we are going to discover
that this problem is precisely the same as that one, except for the change in the numbers.

So let there be six vertical the pairs of the 7 boxes)
and 5x’s. In how many can we fill up 5 + 6 = 11 empty spaces with these six scparators

and 5x’s. It can be done in (lsl] ways. This is therefore the answer to the problem. In

fact it is the same as the answer to the are there of

: How many

7 things taken 5 at a time with repetitions and we know the answer is (7 +;' l]:(l;)r
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The distributi of n indistinguishabl objects into m distinct boxes, if there is no
estriction on how many each box may contain, is therefore the same problem as the
uumber of combinations of m things taken n at a time with repetitions permitted.

is (m+n—1
And the answer IS [ e )

EXERCISE 9.1

1. How many permutations of 1, 2. 3 ... 7 begin with an even number? How many begin
and end with an cven number? How many of the latter also have an even number in the
middle?

2. Show that the number of one-one mappings of a set A with n objects into a set B with m
objects (n < m) is m,

3. The Reserve Bank of India prints currency notes in denominations of Two Rupees, Five

Rupees, Ten Rupces, Twenty Rupees, Fifty Rupees, One hundred Rupees and Five hundred

Rupees. In how many ways can it display ten currency notes, not necessarily of different

denominations? How many of these will have all denominations?

In how many ways can an employer distribute ¥ 1000/~ as Festival bonus to his five

employees? No fraction of a Rupee is allowed. The only condition to be followed is:

Each employce should get at least T 50/-

How many 6-letter words of binary digits are there?

For what values of # would the following be true? (i) 11, = 12, (i) 9, = 10,.

The results of 20 chess games (win, lose or draw) have to be predicted. How many

different forecasts can contain exactly 15 correct results? -

Aperson has # fricnds. How large must n be, so that the person can invite a different pair

of friends every day for four weeks in @ row, B

9. How many integers between 1000 and 9999 (both inclusive)hudigi@dng.uvofm.
how many are even numbers? How many consist entirely of odd digits? '

10. In how many permutations of the word AUROBIND do the vowels appear in the
alphabetical order? " .

11, Show that the following give the xame number: (a) The number of selections of{ob.l:?!
from n different objects, with repetitions permitted; (b) The number _ofc!nmb\molmm;
non-distinet objects inta n distinct boxes; (c) The number of non-negative integer S0
X +x+.  4+y,=r -

12, In how many ways can you permute the letiers of the word CONSTITUTIO!

13. Construct another problem in initation of Example 16 of section { o
there with no consecutive 1I's?

IS

Bl o o

o

14, How many arrangements of five 0's and six I's are
15, Arcctangular city is divided by streets into squares. There are l{r tmu::;m
10 south and k squares from cast 10 we;L Fi:: nl:»:n:umbcl of sl
north-castern end of the city to the south-we 2 )
16. In how many ways can Ihcynumbcr 1t be presented as an ordered sum of k non-negative
components? )
1n how many ways can  people stand to form a ring?
Prove that

" (;,'_',]/(2] ity (2::)/[:) =, ()

R
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19. The set [AC. GC.C.C.GC, T.AC. T} is the set of fragments which together makeup a
DNA-chain. But we do not know in what order they are to be put together. In all how
‘many ways can they be put together?

20. How many increasing permutations of m symbols are there from the n-set of numbers
{4y, @, ., a,) where the order among the numbers is given by a; <a; <a3<...<a,?

21. Prove, by logical reasoning from the definition of the numbers, rather than by use of
formulae, the following:

@ n=(-1),+rn-1),_, ©®) n,=n,_,

© my=nx(m-1),_, @ [:)r,u,,
n n=1
© ()47

22. How many functions defined on a set of  points are possible with values 0 or 17 How
many of these functions have precisely m I's in their range?

23. A lift automatically operated has a further computer facility of recording how many
people leave the Lift at cach floor. It starts at floor 1 and goes up to floor 6. How many
different records are possible of the people leaving the 1ift? What if the 8 people consisted
of 3 men and 5 women and the computer can distinguish a man from a woman?

24. Delegates from 9 countries including countrics A, B, C, D are (o be seated in a row. How
many different seating amangements are possible if the delegates of countries A and B
are to be seated next to each other and the delegates of countries C and D are not to be
seated next (o each other.? How will the answer change if the seating is done at a round
table?

25. Prove that there are [: X :) positive integer valued solutions of x; +x, + ... +x, = n.

26. Prove that

where t=tanA.

9.3 BINOMIAL THEOREM
The numbers
n =
(5)-

()

(n) n(n-1)
2 12

n

nn=1)(n=-2)...(n—r+1)
123

¢
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(2)-
n
are called BINOMIAL COEFFICIENTS because they occur in the expansions of the
powers of the binomial expression (a + b)".

‘Thus, (@a+by' =(a+b).(a+b)...(a+b)ntimes
One term in this expansion is, naturally, a”, obtained by taking the a's from all the
parentheses. Similarly, another term is b”. A typical term will be

ap-r

obtained by taking a’s from r of the parentheses and the b's from the remaining (n - r)
parentheses. In how many ways can you choose r parentheses from n that are available?
Clearly there are [” ways. Having chosen the a's from r parentheses, there is no

more choice for the b's, because they have to come from all the remaining parentheses.

Thus the term a” "~ " occurs in the expansion, [:) times. So the coefficient of a"b"~"

is (")
r
Any difficulty in understanding the above can be sorted out by looking at, say
(a+b)*. This is

(@ +b)(a+b)(a+b)a+b)(a+b)
Aterm like a%h* will occur by taking a's from two of the parentheses and b's from

-1 .
the remaining. But 2 parentheses can be chosen from five in (2) = 10 ways; so the
coefficient of a%h* is 10. Note that once we have decided which parentheses contribute

Wthe g, there is no more choice for b. The 10 ways of obtaining a%6* are illustrated
below:

(a+.) (a+.) (.+b) (.+b) (+b)
@+.) (.+b) (@+.) (.+b) (.+b)
@+) (.+b) (+b) @+) (+b)
(a+.) (.+b) (.+b) (.+b) @+)
(.+b) (a+.) (a+.) (.+b) (.+b)
(.+b) (a+.) (.+b) @+) (+b)
(+b) @+ (.+b) (+b) @+
C+b)  (+b)  @+) @+)  (*D
(+b) (.+b) @+.) (+b) @)
(+b)  (+b) (+b)  @+) @+)

. i the
In each case, the choice of the a’s is shown by showing them in boldface. Thus
coefficient a” 7~ in (a + b is ("] This i true for every value of r,every r=0, 1.2

f 2

. Hence we have
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(@+byf=a+ (nf.]ﬂ"'b' *("32},..2# -

(-l

Since ("')=(”2’] forevery r=0., 1,2, ..., n the above can be rewritten as
(@+by=a'+ (’I') @b+ (;)a"‘zbz

n e n
+...+(n_,)a’b" + o+ (n)b"
(@a+by=a+ (’;}a""b' 4(;}1"%2

Writing a = 1, b = x, this becomes

(+xr=1+ (';),u»(;),t’ **(:}‘ +...+(:Jx"

Any one of the four identitics above may be called “The Binomial theorem for a
positive integral index”. Note that, in all the above, n is a positive integer.
Note For another proof of the Binomial Theorem see Chapter 15. Section 6.
EXAMPLE 1. Find the coefficient of a, b in the expansion of (2a + 3b)’.
SOLUTION. The term containing &*b occurs in

5 4 (3p)
( 4)(241) 3b)

that is, 5x2'x3xa'h
So the required coefficient is 240.
EXAMPLE 2. Expand (a + lVa).

SOLUTION. This is
wia® +(?)a’ x Va 4,{6)4:‘(Ila)2 +(6)n’(l/a)’

« (S S+ 8 ) o'

=a®+6a* + 15a% + 20 + 15/a® + 6/a* + 1/a.
EXAMPLE 3. Find the constant term in

3 9.
® (2:’ *i] @ (Zx‘ + i)
P P o

and also as

[ 185

SOLUTION. The typical term in the expansion of (i) is
(D)esty @er

If this should reduce to a constant, the term (x*) x Ix®~" should reduce to x°. This
means 2r =5~ ri.e. 3r =5 which is impossible for any positive integer r. Thus there
is no constant term in the above ion. This may_be confi by an actual
expansion. .

e+ 1= e+ (J) ety wo + ey e

+ (3 e amrsf) e ot o3
= 32010+ 80x7 + 80x* + 40x + 10 x 1/ + 125,
(if) In this case, the typical term is
(9](2:")' wn’~
r
If this should reduce to a constant, we should have 2r=9-rie 3r=9sor=3.
Giving 7= 3 to the typical them, we not [g)(zx’)’ o'
‘)&
I 23
EXAMPLE 4. Prove that
n n n n =2
() 6)-C)

and explain this identity combinatorially.

SOLUTION. We have, (l+x)"-l#[ }1 [2}' +e "( }‘"

Writing x = 1 both sides, we get

werrens (60

Wwhich is the required identity.
Now 2% is the total number of subsets (including the empty subset) of a set of n
distinct objects. But this number is also equal tothe
umber of empty subsets + the no, of 1-sybsets + the no. of 2-subsets +.
+ the no. of n-subsets

220 % 2" 2 1x® =672.

which is equal to



386 Craussiae o Trmw o Pre-Cortsos Maneircs |

EXAMPLE 5. Prove that

()o2(3)e2 (o)

Write x = 1 in (1 + 2x)".

EXAMPLE 6. Show that, given an n-set A the number of subsets of A that contain an
even number is equal to the number of subsets that contain an odd number.
SOLUTION. We are required to show that

()+)+(&)+ =)+ ()+()--

In other words we have to show

G660

This is true because

(=(=x)=1+ (’;J(—x)+(;](—x)2 +(g)(— 2%+
and on substituting x = 1, we get

n n n
0=1- [,]+(2]_(3] $oe
which is the required identity.

EXAMPLE 7. (INlustrative) Here is a pictorial proof of the Binomial Thuors'm (This
was the way the ancient Hindu Mathematicians approached the problem).

AV Y
/\/\/\
/\/\/\/\

Fig.9.7

The nth row in this diagram is (a + b)". Each arrow moving towards the left (right)
is equivalent to multiplication by a (respectively, b). Whenever two arrows converge
to the same position, we add the terms so obtained and write it there.

Since by the very construction of the diagram, a multiplies each term of a given
row, and b multiplies each term of the same row, we find that each successive row is
the multiplication of the previous row by (a + b). Hence the result.

Now isolate only the coefficients from the diagram. We obtain the following diagram
for the binomial coefficients, called Pascal’s Triangle.

B w0 Cononwions. 387

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1
n=5s 1 5 0 10 s 1

P 1 6 15 20 15 6 i

G666 66

In the kth row, each number is obtained by adding the two numbers immediately above
it. See the arrows leading up to 15. In fact this confirms the result

()-C2C7)
= +
r r=1 r
already proved by us.
[ivecisi o |

~

Find the cofficient of

@ xyin (4x-3y)°

®) ¥ in (x+20F@x+7)°
Find the term independent of x in

s 3 2y
(@ [“lJ [H_') ) (4;’«—]
X X x

Prove that

soma{(D)eo3)e o)}

Find the number of rational terms in the expansion of (\/i+’ﬁ)'°~

- Inhow many ways can n persons shake hands?

In how many ways can 6 speakers A, 8. C. D, E, F address a gathering if
(@) A speaks after B?

(b) A speaks immediately after B?
How many subsets of the set (1.2....
Prove that the number of isosceles triangles with
(V4)(3n2 4. 1) or (3/4)n? according as  is 0dd or even.

»

9
© (— - z:’)
X

»~

™

N~

10) contain at least one odd integer?
integer sides, no side exceeding 7 is

& o
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5. What is the number of distinct terms in the expansion of (x; + X3 + .... + x,)"

6. How many non-decreasing sequences of length 7 can be formed from {1, 2, ..., n}. How
many of these are strictly increasing?

7. Show that there is no bijective (one-one, onto) function from a set (o its power set. (The
power-set is the set of all mappings from the set to the two-clement set {0, 1]),

8. If three distinct integers are chosen at random show that there will exist two among
them, say a and b such that 30 divides (a’b - ab”).

9. Consider a finite set S of points in a plane which are not all collinear. Show that there is
aline in the plane which passes through exactly two points of S.

10. How many different rectangles can be drawn on an 8 x 8 Chess board?

11. n objects are arranged in a row. A subset of these objects is called unfriendly if no two of
its elements are consecutive. Show that the number of unfriendly subsets of a k-elements

== (n-kk-bl]

R ) -
G e

13. How many ways are there to seat six different boys and six different girls around a
circular table? How many if boys and girls alternate?

14. Four numbers are chosen from I t0 20. If | k< 17, in how many ways is the difference
between the smallest snd largest equal to k?

15. How many positive in egers are three with distinct digits?

16. What is the maximuni number of terms ( )in a h P of
degree m in n variables? What is the answer if the expression is not necessarily

7 What is the with Problem No. 5 above?

17. What is the greatest number of acute angles that can occur in a convex n-gon?

18. lr_no how many regions do the diagonals of a convex 10-gon divide the interior if no three
diagonals are concurrent inside the 10-gon? Also in how many points do they intersect in
the interior?

19. There are five points in a plane. From cach point, perpendiculars are drawn to the lines
Joining the other points. What is the maximum number of points of intersection of these
perpendiculars?

20. In a party people shake hands with one another (not necessarily every one with every one
else). (a) Show that two persons shake hands the same number of times. () Show that
the number of people who shake hands an odd number of times is even.

12. Prove that

Chapter 10 Factorization of Polynomials Page 389

FACTORIZATION OF
PoLynOMIALS

10.1INTRODUCTION

An expression of the form
pX)=a X +a, X'+ . +ag, @20 )
is called a polynomial of degree n. Here a, is called the leading coefficient of p(x). If
all the coefficients @g, ay..... @, are integers, then p(x) is called a polynomial with
integer coefficients, or briefly a polynomial over Z. Si ilarl \»esayp(x)'inr T jal
Q.ifall a;,j =0.1.2,..., n are rational numbers; p(x) is a polynomial over R if @;,
1.2,.... n are real numbers: p(x) is a polynomial over C, if all a; j = 1,2,3,...,, are
complex numbers. We adopt the following notations;
Z|x)- the set of all polynomials over Z;
QIx]- the set of all polynomials over Q;
R[x]- the set of all polynomials over R:
C[x]- the set of all polynomials over C.
The plus signs in the expression (1) as such have no meaning bccau.se. we.hl've not
given any meaning (o x, — which could be anything in the world. But if p(x) is in Z(x)
and if we define p(k) for any integer k by
ﬂ(k):a,k"d—a,,,k’"t..d»a, o .
then the addition signs lly become fuls it is addition in Z. Similar
i hold for p Is in Q[x], R(x] and C[x].

If plx) is given by (1), then n is called the degree <_>f px). 'n'lus the degrele o.f a
polynomial p(x) is the highest power of x occuring in p(x) with a nonvanishing
coefficient. If #n = 0 in (1), then p(x) = @,. Thus if plx) is in Z[x]. and dcheg Ofpu(;') is
2ro, then regarding p(x) as a function from Z into Z we get aconstant function ,:]8
the constant value a,, for all values of x in Z. We can reason similarly fqrdpolymml 5
in Q[x], R[x], Thus a polynomial of degree zero is a constant polynomi: L _—

If all g; are zero in (1), such a polynomial is called the zemPo’Y"””‘".’iis' e
define the degree of a zero polynomial. If p(x) and g(x) are two polynomi

PRy =apt +ap g +0,0,%20
Gx) = b+ by X" + by, bn#0.

over

then we say
px) = g(x)



_— Gl o Thems. o Pre-Coniso Minucrey]

s What is the aumber of distinct terms in the expansion of (x) +; + ... + x,)"?

6. Hwn-ym-deauﬁumofh‘tﬁrmbefmndfmmlLZ.....n],H“
wyolmenminlyinawiu7 )

7. Show that there i no bijective (one-one, onto) function from a set (0 its power set, (Tp,
mﬂkumdmmmmmwhw&elmmm(o, ).

8. umwmmmummmummwiuexmmoml
nan.nynmbmuaom(a-'b-ab').

9. Consider a finite set S of points in a plane which are not all collinear. Show that there j
alineinﬂzplme-hkhpnmm;hexxdywopoinuofs.

10. How many differeat rectangles can be drawn on an 8 x 8 Chess board?

1L nnﬁmmmmdinamw.Asubwoﬂhueobjemisedlcdun/rimdly:fnotwogf
its elements are consecutive. Show that the number of unfriendly subsets of a k-clements

I

[3)(:)’(';)(”': l)*(;)("';z) 4. 10 (n+ 1) terms
-G )RR o s

13. How many ways are there to seat six different boys and six different girls around a
circular table? How many if boys and girls alternate?

14. Four numbers are chosen from 1 t0 20.If 1 Sk< 17, in how many ways is the difference
between the smallest and largest equal to k?

15. How many positive in egers are three with distinct digits?

16. What is the maximun number of terms )ina of
degree m in n variables? What is the answer if the expression is not necessarily
e ? What is the with Problem No. 5 above?

17. What is the greatest number of acute angles that can occur in a convex n-gon”

18. Into how many regions do the diagonals of a convex 10-gon divide the interior 1 no three
diagonals are concurrent inside the 10-gon? Also in how many points do they intersect in
the interior?

19. There are five points in a plane. From each point, perpendiculars are drawn 1o the lines
Jjoining the other points. What is the maximum number of points of intersection of these
perpendiculars?

20. In a party people shake hands with one another (not necessarily every one with every one
else). (@) Show that two persons shake hands the same number of times. () Show that
the number of people who shake hands an odd number of times is even.

12. Prove that

FACTORIZATION OF
PoLynOMIALS

10.1 INTRODUCTION

An expression of the form
px)=ax"+a, X'+ .. +ap a,#0 )
is called a polynomial of degree n. Here a, is called the leading coefficient of p(x). If
all the coefficients ag, 4,...., a, are integers, then p(x) is called a polynomial with
integer i or bricfly a poly ial over Z. Similarly we say p(x) is a polynomial
over Q. if all @, j = 0,1.2...., n are rational numbers; p(x) is a polynomial over Rifa;,
j=0,1.2,...,nare real numbers; p(x) is a polynomial over C, if all @, j = 1,2,3,...,n, are
complex numbers. We adopt the following notations;
Z[x]- the set of all polynomials over Z;
Q[x}- the set of all polynomials over Q;
R{x|- the set of all polynomials over R;
C|[x]- the set of all polynomials over C.
The plus signs in the expression (1) as such have no meaning because, we_ha‘ve not
given any meaning to x, — which could be anything in the world. But if p(x) is in Z(x)
and if we define p(k) for any integer k by
pRY=ak +a,_ K +..+a,
then the addition signs lly become ful; it is addition in Z. Similar
i hold for poly ials in Q[x), R(x] and C[x].

If plx) is given by (1), then n is called the degree of p(x). Thus the dcgre_e qfa
polynomial p(x) is the highest power of x occuring in p(x) with a nonvanishing
coefficient. If n = 0 in (1), then p(x) = a, Thus if p(x) is in Z[x], and degree ofp(x? is
zero, then regarding p(x) as a function from Z into Z we get a constant function ta.k:mg
the constant value a,, for all values of x in Z. We can reason similarly for polynomials
in QLx], R(x], Thus a polynomial of degree zero is a constant polynomial.

If all @, are zero in (1), such a polynomial is called the zero polynomiql. We don’t
define the degree of a zero polynomial. If p(x) and g(x) are two polynomials,

px)=ax+a, '+ ¥ a,a,#20
) = by X+ by X # o+ by by 20

then we say
px) = g(x)
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ifm=nu|dn,=b,forj=0.|.2....,n- _

In chapter S, we have studied many prop i °f‘. pol ove.rR'
i.e., polynomials of degree 2 with real coefficients. In particular, tAherem .welhav‘e dgﬂvgd
conditions for the existence of real roots of a g dratic p | and its ility
over R. In fact, given a polynomial

px)=ad +bx+c,
where a, b, ¢ are real numbers, we have proved that the equation

P(x)=0
has real roots iff the discriminant

D =b* - dac

is nonnegative. In the case D 2 0, the polynomial p(x) can be factored as

px) = alx- o) (x=B) 3
where o and B are the real roots of the equation (2).If D <0, then (2) has only complex
roots & and B, and once again we have a factorization

p(x) =alx-0) (x=P). 4)
Thus whenever a is a zero of a quadratic polynomial p(x), (x - @) is a factor of p(x).
We shall see that this holds true for any polynomial p(x).

Tf we are given two integers, then we know (see Chapter 2) what we mean by their
greatest common divisor (g.c.d) and their least common multiple (I.c.m). These ideas
can also be extended to polynomials. There is also the counterpart of Euclid’s algorithm
for finding g.c.d of two integers in the set of all real polynomials R[x]. Itis the purpose
of the present chapter to study these ideas.

i ial

)

10.2 ADDITION AND MULTIPLICATION OF POLYNOMIALS

Given any two integers, addition and multiplication can be performed with them. We
shall now introduce a concept of addition and multiplication of polynomials.
Given any two polynomials in Rx], we add them by adding the coefficient of like

powers of x.
EXAMPLE 1. Find the sum of

px) = VS X+ 32 +4x + 2,

q(x) = 67 +V7x +V3.
SOLUTION. We first observe that the maximum power of x that appears in p(x) or
g(x) is x*. We can arrange the coefficients of like powes of x as in table 10.1.

TABLE 10.1
& Coefficient of the power
) = : .“. z i .' as 2 2 x Constant
p(x) s 0 3 4 2
q(x) 0 6 0 V7 V3
P +q(x) N5 6 3 44+\7 24+\3
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ve implicity assumed here i i S
xnh;e coe?fﬁciezt of x*in that pommzﬁ m o it
P°lyn°mials of different degrees. So we have ’ W Wiaiive
pl(x)+?(:)=45x‘+6x3+3;2+(4+~l7)x+(z+~13).
iven a polynomial p(x), 1 i i i
m;‘m‘m a;p('; s n,:(g a’l iv:e polynomial ~p(x) is obtained by changing each
Thus if .
Px) =3x"-5x2 -3 4+ 4,
then -p(x) is given by
-p(x)=-30 + 522 + V3x— 4.
EXAMPLE 2, Find p(x) - g(x) where
px) =X -52+2x+9,
q(x) =x* + 8- 5.
SOLUTION. By p(x) - g(x) we mean p(x) + (~q(x)). So we have
px) = g(x) =—* + =132 + 2x + 14,
We define the product of two polynomials by multiplyi
then adding the coefficients of Iik’:a pi:/aen of x usm;l:':;lv;f :fw"’.nd,l:: xfxyl Z’;&f’r‘f
EXAMPLE 3. Consider the polynomials
px)=32+2x+ 1,
gx)=x+3.
SOLUTION. Then their product is
P ) =3 + 97 + 2 + 6x +x + 3
=3+ 112+ Tx+ 3.
EXAMPLE 4. Multiply p(x) and g(x), where
px)=NS X 430 + 4x+ 2,
q(x) = 6 + N7 + V3,
SOLUTION. Multiplying term by term, we have
LX) glx) = 6V5X7 + V35x8 + VIS + 18x5 + 3V7at + 3V3x2

F22 +4VT O +43x+ 12342724243
= 6V5x7 + V358 + 182 + (VIS + 3v7 + 24\t
+ (VT 4 1200+ (3V3 + 2V7)% + 4V3x + 2V3.
EXAMPLE 5. Find the sum and product of p(x) and g(x), where
Py =2+ 9 + 3+ 1,
G =2 + 627 + 4x.
SOLUTION, Adding like powers of x, we get
PO +g) =X + 5+ 90 + 67 + T+ L
Similarly,
Plx) glx) = x'2 + 60% + 428 + 928 + 545 + 36x*
4320+ 180 + 1207 + x° + 607 + 4x
=x'2 4 62 + 13x% 4 300 + 55x° + 36x* + 18 + 1827 + dx.
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The given examples reveal how the degrees of sum and product are related to the
degrees of individual polynomials. If p(x) and g(x) are two polynomials, then

deg(p(x) + g(x)) < max { deg p(x), deg g(x) } )
and deg(p(x) g(x)) = deg p(x) + deg q(x) 2)
Here we have used deg p(x) to denote the degree of p(x). If we take
px)y=xt+1, g =-x+1,
then  deg(p(x) +¢(x)) =deg (2)=0

whereas
max {deg p(x), deg g(x)} = 2. Thus, there may be strict inequality in (1).

EXERCISE 10.1

Find the sum and product in the following:
L P =8¢ +93 +12x+4, g =x"+102+9

2. PR =V25+ 72 +V5x+6, qlo)=x'+107-9

3, p)=x-1, q) =+ +x 44 x4+
4 PR =2+ V2 +1, gy =2 —V2x+ 1

5. P =V + 82 + 4, g(x) = V72 - 62 + 2x

6. PO =052 +22 +V2x+1, g(x)=9+3x+6

7. p(x)=.;-x‘+%x1+%. g =76 +30 +5

8. p(x')=x‘°+x’+x‘ +x+1, g=x-1

9, P =2 -+ -P+x-1gx)=x+1

10. PO =10+ 98 + 87 + ..+ 2+ 1, g =x-x+]

11, PR =38 + V2 + x, glx)=-V3x' + V2r-x

12, P(X) = 1025 + 622 + 2, q(x) =-1028 - 627 + 2x

13, PO=10C 492 +2x+1, g =X +2,rx)=x+1

14. PO =42 +x+1, q(x) =30 -5x+2,rx)=x~ 1

10.3 DIVISION OF POLYNOMIALS
Given two,integers / and n with n > 0, we know that we can divide m by n to geta
quotient ¢ and a remainder r and express it as

m=ng+r [¢V)
where 0 < r < n. Here ¢ and r are uniquely determined by m and n. A relation of the
form (1) is also true for polynomials. We shall begln with the division of a polynomial
by another.
EXAMPLE 1. Let us divide a(x) = X + 8 + 21x + 8 by b(x) = x + 2. The direct
division table is given here

[Fdronasmon or Pounouns 303

x+2) O+8242x+18 (24649
X422
62+ 21x
62+ 12¢
9x+18
9x+ 18
0+0
This gives the quotient x* + 6x + 9 and the remainder zero.
EXAMPLE 2. Divide a(x) by b(x), where
ax)=x*+32+9,
bx)=x+4x+ 1
SOLUTION. The division process is as follows,
Frdrtl) B0+ 432+ 0c+9 (P -4ax+ 15553
xS+ axt+
-4x'- P43
—4xt - 1607 - 422
1563+ 7x2+0x
15x* + 60x* + 15x
-53x2- 15x+ 9
—53x*-212x-53
197x + 62
Thus the quotient after division is
q(x) =x*-4x*+ 15x - 53,
and the remainder is
r(x) = 197x + 62.
The result of the division can be written in the form
(43024 9) = (& + 4x + 1) (P~ 4+ 15x - 53) + (197x + 62).
In example 1, we can write the division in the form

a(x) = b(x)q(x) + r(x) [¢3)
Wwhere q(x) =x1*(u+9.
and =
Similarly, we can write the dmsmn in example 2 in the form (2) with

q(x) =3 -4x*+15x - 53, ~ -

rx) = 197x + 62.
1fa(x) and b(x) are such that

deg a(x) < deg b(x),

then again we have a relation of the form (2) since, using the symbol 0 for the zero
Polynomial, we have,

a(x) = b(x) . 0 + a(x)
50 that g(x) = 0 and r(x) = a(x). In all these cases, we observe that () is either the zero.
Polynomial or
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deg r(x) < deg b(x).
These observations lead to what is called the Division Algorithm.

DIVISION ALGORITHM
If a(x) and b(x) are polynomials with real coefficients, then there are unique polynomials
q(x) and r(x) with real coefficients such that

a(x) = b(x) g(x) + r(x) 3)
where either r(x) is the zero polynomial or

deg r(x) < deg b(x)
A proof of this can be given using the principle of induction and we omit it here,
‘The process of division can also be carried using a method called Horner's method

of synthetic division or synthetic division, for short. We describe this method in the
next few examples.
EXAMPLE 3. Consider the division of a(x) = 4x = 6x* = 2x + I by b(x) = x - 2.
SOLUTION. The process of synthetic division is described on the left side of the
following page, whereas the actual division is shown as the right side.
The coefficient of x* is 4. Hence the first term in the quotient must be 4x* and its
coefficient is 4. This appears as the first term in the last row of the left side. When 4x*
is multiplied by —2, we get —8x> and this has to be subtracted from the x* term in the
given polynomial. This amounts to add the coefficient of x* o 8; i.e. adding 0 to 8 and
we get 8. This leaves 8x* and hence 8x? must appear in the quotient. When we multiply
8x? by -2, we get —16x2 and this has to be subtracted from the +* term in the given
polynomial. This process is same as adding 16 to the coefficient of x” in a(x) and this
leads to 10x%. Thus the number 10 appearing on the L.H.S. is the coefficient of +*. We
can continue the process till we account for all the coefficients of a(x). We get the
quotient

q(x) =4x> + 82 + 10x + 18,
and the remainder

r(x)=37.
Let us consider a general polynomial

pX)=ax"+a, X'+ . +apx+ap
Suppose we have to divide p(x) by (x - ). We can find unique polynomials g(x) and
r(x) such that

Px) = (x—) gx) + r(x)

|-(+2y4 0 -6 -2+1V«s'|o?m

4-8
8- 6
8-16
+10-2
10-20
+18+ 1
18- 36
37
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x_zj 444000 - 6x2 - 2p + |\4x'+aé+mx+1a

4xt - 8x?
_—

+ 8%~ 6x2
8’ 16x2
10x2- 2¢
10x%- 20x
+18+ 1
18x-36

37
where deg r(x) <deg (x- ) = 1.
Thus r(x) is a constant say r(x) = r. We also note that deg g(x) = n - 1, so that
q) = by x4 by_yx" 244 b, by #0.
Hence we have the identity
a,,(‘+a,,,.x""¢...+a,,=(x—u)(b,,_,t’"+b,,_,,\‘"24.,.+b,)+r.
The R.H.S. can also be written as
by X+ (by g =0b, )X 4+ (by—ab)x+(r-ab,).
Now comparing the like powers of x, we get
by 1=a,
bp2=a, 1 +ab,_,

by=a,+ab,
r=a,+ob,
This can be written as follows.

(1-a) |aq + s oy ¥ s ok ap o @

n n

+ ab,_, + ab,_, + + ab + ab,

b +

n-l n-2
EXAMPLE 4. Use synthetic division to divide 5x* + 6x + 2 by x + 4.
SOLUTION. Since x + 4 = x — (-4), we can take & = —4 in the synthetic division we
have performed earlier;

1-(4)|5+0+ 0+ 6+ 2
~20 + 80 - 320 + 1256
5 -20 + 80 - 314 + 1258

Thus the remainder after division is 1258 and the quotient isix‘-l(lxzfmx—AJH.
We can use synthetic division even when the divisor is a polynomial of higher
degree.

F By ek by ® P

EXAMPLE $. Divide 3¢ - 5x° — 11 + 1 by - 2x=2.
SOLUTION. We write ¥ - 2x - 2 =x2 - (2x + 2). The division process can be recorded
as follows:
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Table 10.1
1-Q+2)|3-5-1m+1 -1
+6+2-6 (a)
+6+2-6 ®)
3+1-3-3-1 ©

The first term in line (c) is 3. We have 3(2 + 2) = 6 + 6. We put first 6 in line (b) and
another 6 in line (a) in a diagonal way as shown in Table 10.1. Since —5 + 6 = 1, this
is placed in line (c) adjacent to 3. Again 1(2 +2) = 2 + 2 and these two 2's are placed
in a diagonal way with 2 appearing in each of the lines (a) and (b). Again — 11+ 6 +2
=—3 and this is placed in line (c) adjacent to 1. Since ~3(2 + 2) = - 6 +(~ 6), we place
these bers in a diagonal way as i carlier. We add the last two columns;
14+2-6=-3,-1-6=-7.The quotient is 3x? + x - 3 and the remainder is — 3x -7,
The reckoning of Table 10.1 can be clearly understood by comparing it with actual
division.

$-20-2) 3x*+S5O- 1t +x-1 (x2+x-3
3x4 - 6x* — 6x2
-5+ x
©-2¢ - 2
-3+ 3x-1
-3+ 6x+6
-3x-7
EXAMPLE 6. Divide 3% + 6x* = 2% = x? ~2x + 4 by x? + 2x - 1.
SOLUTION. With the usual reckoning of synthetic division, we have the following
Table.

1-(2+1)|3+6-2-1-2+4
+340+1-3
~6-0-2+6

3+0+1-3+5+1
Thus the quotient after division is 3x* + x — 3 and the remainder is 5x + 1.

ic division for

We can also use

polynomial in x - o.

EXAMPLE 7. Express the polynomial a(x) = X’ + 2x* + x + 80 as a polynomial in x + 5.
SOLUTION. Suppose a(x) = 0 (x +5)° + 0 (x + 5)° + @; (x + 5) + 01, where 0, @,
a, and 0y are constants to be determined. Now we can write

a(x) =(x+5) qi(x) + o
for some polynomial g,(x). Hence 0y is the remainder after the division of a(x) by
x + 5. The quotient g,(x) is given by
@) =03 (x+ 52 +op(x + 5) +
3 =(x+5)q@+a.

This shows that @ is the remainder left by the division of g (x) by x + 5. Once again,
we have,

the given poly ial a(x) as a

@(x) = o3(x +5) + o
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and hence 02 in the refminder obtained after dividin, _
can be got as the quotient of the division, Thus the Ci::gv::yug ; 5); the constant o,
obtained systematically using the division process. We ively 1 0, u:ﬁ 03 can be

givision here.
I-(=5)|1+2+ 1+80
-5+15-80

1-3+16+ 0
The preceeding Table shows that the quotient is
qx)=x2-3x+16
and 0 = 0. Dividing g;(x) by (x + 5), we get

-8 1-3%16
-5 +40
1-8+56
the quotient
gy(x)=x-8
and the remainder o; = 56. Once again we can write
@) =(x+5)-13
so that a; = — 13 and o3 = 1. Thus we can write
'+ 2% +x+ 80 = (x +5)° - 13(x + 52 + 56(x + 5).

EXAMPLE 8. Express the polynomial a(x) = x* + 4% + 9x + 5 in powers of x + § @
SOLUTION. We use synthetic division and the idea established in example 7.

1-C13)[ 1+ 4+ 9 & 3
- 13 -19 - 70127

1+ 113 + 709
- 13 - 109

143

The preceeding table of division shows that
B 442 4 9x + 5 = (x + 1/3) +3(x + 173)2 + 60/9 (x + 1/3) + 65/27.

EXERCISE 10.2

. Divide a(x) by b(x) in the following
(@) a(x) =325+ 7 + 98 + 2+ |, ) =2x + 2.
() a(x)=x'0+ #4644+ 1L bR =B+ +1
(0) atx) =27 + 9 + dx, b(x) =x* + 3 = 2.
() a(x)=x8=2, b(x)=x-52.
(€) a(x) =2~ 2 - Sx +4,b(x) =x-3.
() a() = 4¢ - 26 - 168 + 5x 4 9, bx) =6 - 2= L.
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(@) o(x)=5c -2 -2x~ 1, b{x) =x* +4x+ 3. %
) alx)=x'-92 +27x - 27, H(x) =X - 2x + 4.
) o =-12¢+4C + 92 - L bx)=x* + 7.
() ax)=-20* - 12 + 20 + Tx+ 6, Bx) = + x.
k) ax)=x* -2 +3. Kx)=x-3.
D a=x+2F++P+x+ 1. bx)=P-x-2.
(m) a(x) =32 - 28 + 65x° + 1607 - 80x, b(x) =35 - X — 427 + 1.
2. Use synthetic division to divide a(x) by b(x) in the following set
(@) al(x)=4x’ - 247 + 21x -5, bx) = 2x - |
®) o(x) =3+ 195 + 22x - 24, b(x) = x + 3
(€) alx) =50 422+ 81x+ 18, b(x) =x-3
(@) a(x)=2x"- 180 + 32x + 21, blx) =x- 7
(€) ax)=x"-9xr + 3¢ + 4. b(x)=x-7
() alx)=x*— 112 + 33 - 37x - 14, b(x) =¥ - 2x + |
@ an=xf+rF+2+ 1 bx)=x>-1
h) ax)=3¢+92 + 2, B(x) =+ 2x+ |
M a(x)=x*-37- 147+ 120 + 40, b(x) = x> - 4
() alx)=x*—x* - 492~ Tlx + 120, b(x) = x* + 8x + 15
k) a(x)=4x*+32 + 2. b(x) = + x|
(D alx)=x'2-64, b(x) =x*-2
(m) a(x)=x*-102+9,b(x)=x+2
(n) alx)=x*~ 152 + 10x + 24, b(x) = X’ + 6x + 9
©) atx)=x5+3¢ - 202 + 152 + 4x - 20, bx) =2 —x - 2
@) alx)=x* -9 + 9 + 41x - 42, b(x) =X +x- 2.
3. Asrange the polynomial
atx)=x' -9+ 27x-27
in powers of (x - 3).
4. Express x* + 4x’ + 4x + 1 as a polynomial in x + |
8. Express x* - 32 as a polynomial in x - 2
6. Express x'%— | as a polynomial in x - |
7. Express x* - 2 in powers of x - V2
8. Amange x* - 9x° + 36x% ~ 108x + 189 in powers of (x - 3)
9. Express < + 124 + 56¢* + 1197 + 274 in powers of x* + 3
10. Express (¢ + 9x° + 32x + 16) (x* - 7x + 6) in powers of x - 1.
11. Is the polynomial 18x° - 105x% + 77x - 10 divisible by x~ 5 ? Can your answer be based
©on an argument without performing actual division?

10.4 REMAINDER THEOREM AND FACTORIZATION
In section 10.3, we observed that given any polynomials a(x) and b(x) in R[x), there
are unique polynomials g(x) and r(x) such that

a(x) = b(x)q(x) + r(x) (h
where cither r(x) is zero or deg r(x) < deg b(x). This result is also true in Z{x], Q[x] and
C[x]. We shall use the division algorithm to get an elegant exfression for the remainder
when a polynomial a(x) is divided by (x - ).
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Theorem 1. ( d If a(x) is a pol: il .
pumber, then the remainder after dividing a(x) by x - i a(a;? Wil o wt
Proof. Using division algorithm we can find unique i

polynomials g(x) and
- 9(x) and r(x) such

a(x) = (x - a) g(x) + r(x) ®

where either r(x) is zero or deg r(x) < deg (x—0) = 1. Hence if r(x) i
0; Le., r{x) must be constant, say r. Putting x = ot in (2), R )

ale) =r(e)=r
and this in turn gives

a(x) = (x - &) g(x) + a(cr) ®)
Thus the remainder is a(c). a

Definition 1. Let a(x) be in R[x]. A real or complex number o is called a roof of the
equation

a(x) =0
if a(a) = 0. We also say that o is a zero of a(x).
REMARK. The remainder theorem is also valid in Z[x], Q[x] and C[x]. If a(x) is in
Z[x] and a is an integer, then the remainder after dividing a(x) by (x - a) is a(a).
Similar results are true in Q[x] and Clx].
Corollary. If a(x) is in R[x] and o is a real zero of a(x), then

a(x) = (x - o) g(x) “@

for some polynomial g(x) in R[x].

If & is a complex zero of a polynomal a(x) in R[x], then (4) is still valid with the
understanding that ¢(x) is now in general a pol ial with complex i
EXAMPLE 1. Let us consider the polynomial

ax)=x-+x-1.
Then a(1) = 0. Hence the remainder theorem gives
a(x) = (x = I)g(x)
for some polynomial g(x). An easy computation gives g(x) = x* + 1. Thus we have,
Hoxdbx—l=x- D+ 1),
EXAMPLE 2. Consider the polynomial
a(x) =x* + 2% + x + 80.

We have
a(=5) = (-5)* + 2(-5) + (-5) + 80
=-125+50-5+80=0.
Hence using remainder theorem, we have
a(x) = (x + 5)g(x)
for some polynomial g(x). We shall compare this with example 7 of section 10.3. We
bave expressed there a(x) as a polynomial in (x + 5);
a(x) = (x +5)° = 13(x + 5)* + 56(x + 5)
= (x+5)(2-3x+ 16).
Thus g(x) =x*=3x+16.
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EXAMPLE 3. Let a(x) be given by,
a(x)=x*+ 30 + 53 + 9x + 6.
Now we see that
a(=2) = (-2)* + 3(-2 + 5(-2* + 9(-2) + 6
=16-24+20-18+6=0.
Hence
a(x) = (x + 2)g)(x) (5)
for some polynomial g,(x). On the other hand
a(-1)=1-3+5-9+6=0.
Putting x =~ 1 in (5), we get
0=a(-1)=(-1+2) q(-1)=¢q-1)
Hence we can find a polynomial g,(x) such that
@) = (x+ 1) g2(x) ©
Combining (5) and (6), we obtain
a(x) = (x + 2)(x + 1) ga(x).
Definition 2. Let a(x) and b(x) be polynomials in R[x]. We say b(x) divides a(x), or
b(x), is a divisor of a(x), if there exists a polynomial g(x) in R[x] such that
a(x) = b(x)q(x). 7
If b(x) divides a(x), we also say that b(x) is a factor of a(x) and we write b(x) | a(x)
(Read b(x) divides a(x)).
Suppose b(x) | a(x). Then we have
a(x) = b(x)q(x)
for some g(x) in R[x]. If &t # 0 is a real number we can write
a(x) = (ab(x)) (Va)g(x)
and (1/c) g(x) is again in R([x]. Thus o b(x)la(x) for every real number o # ()
Let us consider Z{x]. We say a polynomial m(x) divides a polynomial n(x) in Z[x] if
there is a polynomial /(x) in Z[x] such that
n(x) = m(x)l(x).
If km(x) In(x) for some integer k # 0, then
n(x) = km(x)l(x) for some I(x) in Z[x].
We can treat  also as an element of Z(x], it being a constant polynomial. Thus k
also divides n(x). Let us write
n(x) = kj(x)
where j(x) has integer coefficients. Since
deg(n(x)) = deg(k) + deg(j(x))
and deg(k) = 0, j(x) and n(x) must have the same degree.
Suppose
Ax)=ap +a, X'+ +aga,#0,
and J) = b + by N+ + by, b, # 0.
Then we get a set of relations
a,=kby, a,_y=kby_y, ..., ag = kby.
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Thus k is a common factor of the coefficients ag, ay,

km(x) | n(3) for some integer k, then k can take only it :

of the common divisors of the coefficients of n(. x).yln p.mc:‘ .;’fi;{alu; inZ, viz., any
=1, then k =+ 1 or - L. In contrast, if a(x) and b(x) are in Rl!l,mg.i.cr'b(i%l' ay,..., ay)
ab(x) | a(x) for every real nurf\ber a#0. These things are inherent in the s:'u:t(: ) thon
and R. The only integers having multiplicative inverses in Z are + 1 and -1 B i
real number o # 0 has a multiplicative inverse in R, namely /.. ey

Example 1 shows that (x + 1) and x> + 1 are divisors of 3 — x2 4 x Examj

shows that x + 5 is a divisor of x> + 2x2 + x + 80, Similarly, enmple; sh::;ws ump(I:f
1), (x+2). and (x +1)(x +2) are all divisors of x* + 31+ 53 +.9x 4 6 If the relation (7)
holds, then g(x) is also a divisor of a(x). '

Some important facts on divisibility in R[x] are recorded in the following statements.
(1) If p(x) | a(x) and p(x) | b(x), then p(x) | (a(x) + b(x)). )
(2)1f p(x) | a(x), then p(x) | (a(x)b(x)) for any polynomial b(x) in R[x].

(3) If p(x) | a(x) and a is a real number, then p(x) | ca(x).

(4) If p(x) | a(x) and o # 0 is a real number, then op(x) | a(x).

(5) If g(x) | p(x) and p(x) | a(x), then g(x) | a(x).

If a(x) can be written as a product of two polynomials, say
a(x) = b(x)e(x),
and if either b(ct) = 0 or c(a) = 0, then a(o) = 0. Thus any zero of b(x) or c(x) is also a
zero a(x). Conversely if o is a zero of a(x), then a(ct) = 0 and hence
b(a)c(a) = 0.

This in turn implies that either b(ct) = 0 or c(c) = 0 (or may be both). Thus every zero
of a(x) is either a zero of b(x) or a zero of c(x).

Suppose . is a real zero of a polynomial a(x) in R(x]. Then by division algorithm
we can find a polynomial ¢(x) in R[x] such that

a(x) = (x - 0)q(x).
If o, is a real zero of g,(x), then it is also a zero of a(x). On the other hand another
application of division algorithm gives
4,(x) = (x ~ ay)gs(x)
for some polynomial ¢,(x) in R[x]. We can continue this process until we exhaust all
the real zeros of a(x), say @, @y, ..... G, In the end, we have
a(x) = (x = o)) (x = 0).... (X = Ot Gul(X) (8)

for some polynomial g,,(x) in R[x], which has no real zeros.

A polynomial a(x) in R[x] may not have a real zero. This fact was observed in

Chapter 5 on quadratic equations. For example, the polynomial
ax)=x+1
has no real zero. Thus, in general, the polynomial g,(x) in (8) may have positive degree.
We see from relation (8) that
deg(a(x)) = m + deg(gm(x))-
Thus, we have

@y Of n(x). Hence, whenever

©)

m < deg(a(x). (10)
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‘We record this observation in the following statement
If a(x) is a polynomial with real coefficients, then the number of real zeros of a(x)
cannot exceed deg (a(x)).
EXAMPLE 4. Consider the polynomial
a(x)=x*~1.
It has only one real zero, namely, 1. In fact
ax)=(x-1D2+x+1)
and 2 + x + 1 > O for all real numbers x, as we have observed in section 5.6. Thus the
polynomial x? + x + | has no real zeros. Hence the number of real zeros of x* - 1 is
only one and this is strictly less than the degree of x* - 1. It shows that the number of
real zeros of a polynomial may be strictly less than its degree.
EXAMPLE 5. Let us consider the polynomial
ax)=x* - -x+1.
Since a(1) = a(=1) = 0, we can write
a(x) = (x-1) (x+ Dgl(x)
for some polynomial g(x). We can easily compute g(x), and it is equal to x ~ 1. Thus,
a(x) = (x-1)2x+1).
Hence a(x) has zeros 1, | and - 1. This example shows that a zero of a polynomial may
repeat itself. Given a polynomial a(x), we say that o is a zero of a(x) of multiplicity m
if there exists a polynomial g(x) such that
a(x) = (x - @)™ g(x) where g(a) # 0.
Thus a(x) has m zeros @, @, ..., @, and the remaining zeros of a(x) are precisely the
zeros of g(x). If a is a zero of a(x) of multiplicity m, then we count a totally m times
when we consider the number of zeros of a(x). Such a process of counting the zeros of
a(x) is called ‘counting according to multiplicity'.
In example 5, 1 is a zero of multiplicity 2. Thus counting the zeros of a(x) given in
le 5 di Itiplicity, we see that the total number of zeros of a(x) is

equalllo its degree.

Consider the polynomial

ax)=x*+1.
Since x2 + 1 >0 for all real numbers x, a(x) has no real zeros. This in turn implies that
there are no real numbers o, and o, such that
Bal=@-0)x-0).

In other words, x* + 1 cannot be written as a product of linear factors with coefficients
in R. This is an inadequacy of the real number system itself. However, if we consider
x2 + 1 as a polynomial over C, then x? + 1 has zeros in C Infact, +i and —i are the zeros
of x? + 1, and

24l=(x+ix-i).
This is indeed true of any polynomial a(x). It is a consequence of a deep result known
as fundamental theorem of algebra that any polynomial a(x) in R[x] can be factored as
a(x) = Blx — o) (x = 0)....(x - @), (1
for some complex numbers B, &, 0, ..., &,; n = deg a(x).
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Fundamental Theorem of Algebra If i onconst:
complex coefficients, then a(x) has at least o:.?;:, iannC o
If a(x) is in R[x], then the fundamental the y

zero oy in C. Hence. cemokal
a(¥) = (x - o;)g;(x)

for some polynomial ¢,(x) in C{x]. Applying the fundamental theorem gebra tc

¢(x). we conclude that ¢,(x) has a zero , in C. Hence, w::; il L
alx) = (x - oy)(x - ay)g,(x) '

for some polynomial g,(x). Continuing this, we concl zati

form (11) h_olds for a(x). We can a]w:ys geta fumn’mionm:;‘aa mllmm'lr s tlw i

R[x] involving only quadratic factors and linear factors. Suppose sl e

w=o+iB B0
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gebra implies that a(x) has a

is a zero of a(x). If
ax)=a,x"+a,_ ! +.. +dy,

where ag. a....a,. are real numbers, then

apw+a, (w4 4ay=0,

Taking the complex conjugation on both sides, we get

a, %" +a, ;W' 4. 4ay=0.
Thus W is also a zero of a(x). This reasoning shows that the nonreal zeros of a
'polynomial a(x) in R[x] appear in pairs. But then (x~w), (x~ W ) and hence (x— w) (x
= W) are all factors of a(x). However, we can write

(X=w)x = W) = (x— o — iB)x - o +iP)
=(x-ap+p2

Hence (x- 0+ [B* is a factor of a(x). Since (x~ tx)? + B2 is in R[x] and a(x)isin R[x],
the quotient after the division of a(x) by (x— )? + B gives again a polynomial in R[x).
Applying the same reasoning 1o this quotient, we can further factor a(x). Finally we
get a factorization in the form
alx) = c(x = y)(x = y2) .. (X = y)q1(X)g2(%)...gm(%) )
2.« vy are real zeros of a(x) and g(x) are qyadratic factors of the form

Inthe factorization (12), k could be zero or m could be zero. If we take the polynomial
a(x)=x-3x+2
then it can be factored as
a(x) =(x=2)(x-1)

50 that a(x) has no quadratic factors and m = 0 in (12). On the other hand, let us
consider .

a(x)=x*+3%+2. R

Then a(x) > 0 for all real numbers x and hence a(x) has no real zero. Again, we can
Ve a factorization ) ’
' a@W =+ D2 +2) ’
1olving only quadratic factors and k = 0 in (12).

/
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If a(x) is a polynomial in R(x] of odd degree, then the factorization (12) shows that
a(x) has at least one linear factor. Hence a(x) has at least one real zero. We record this
in the following.

A polynomial of odd degree with real coefficients has at least one real zero.

FXERCISE 10.3

1. Verify whether a(x) is divisible by b(x) in RLx] in the following problems
(a) a(x)=x*+23-8,blx)=x-2.
®) at)=x5+57+3 +9,b(x) = 2x-3.
(©) a(x)=x*"-52+6,b(x)=x-2.
@ a(x)=x -3 -3x+ 1. bx)=x-1.
(€) a(x)=2"- 65+ 12 -8, b(x) =x - 2.
() a(x) =350~ 1248 - 67x + 12, b(x) = 5x + 3.
(g) a(x)=18¢ =52 + T7x - 10, b(x) =x =5
(h) a(x) = 63 - 14952 + 48x — 4, b(x) =x - 2.
(@) a(x) =62+ 1733 =23x - 70, b(x) =~ 2x + 5.
() a(x) =20 - - 297 + 26x + 48, b(x) x - 3.
(k) ax) =26 + 5x3 - S0 + 25x + 28, b(x) = % + 3x - 28.
) a(x)=x+4x> + 8 - 9x+ 2, b(x) =x* + 3x+2.
(m) a(x) =2 - - +ax+2,bx) =2 + 20+ 2.
2. Prove that ™ + o™ is not divisible by x - o
3. Prove that ¥**' - @®* ! is not divisible by x + c.
4. Prove that x* + o is not divisible by x + a.
5. Prove that 2n° - 3n% + n is divisible by 6 for any natural number n.
6. Prove that x* — @” is divisible by x - a.
7. Show that x" + a" is divisible by x + a iff n is odd.

10.5GCD AND LCM OF POLYNOMIALS

In Chapter 2, we studied the concepts of greatest common divisor and least common
multiple of two integers. Recall that if m and n are two integers, then an integer risa
greatest common divisor (ged for short) of m and n if
() rImand rln, and
(ii)ifllmand !l n, then/1r.
Thus r is a common divisor of m and n, and it is largest, only in the sense of (ii). For
example, a gcd of 12 and 18 is 6. We observe that 6 also is a ged of 12 and 18. This
brings out a fundamental aspect of ged of two integers that it is not uniquely defined.
Whenever r is a ged of m and n, - r is also a ged of m and n. However, if we require
that ged be positive, then it is aniquely determined.
All these ideas can be carried to polynomials. We shall begin with an example.
EXAMPLE 1. Consider the polynomials
a(x)=x* -2 - +4x-2,
bx)=x'-3x+2.
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We observe that a(1) = 0=a(\2) = a(~V2). Similarly b(1) =
0. Thus we can get factorizations, arly b(1) = bl-1) = (b2) = b—2) =

ax) = (- 2)(x - 1,

bx) = (- 22~ 1),
This factorization shows that (? - 2) | a(x) and (x2 - 2) 150). Similarly (x— 1) divi
both a(x) and b(x). Infact, (x— 1), (x—V2), (x +V2), (- 2), (x 1) :;(‘: 4;; tvn_d:::
(x+V¥2)and (% ~2) (- 1) ate common divisors of a(x) and b(x). Of course, v;lehav:
seen that whenever ¢(x) | a(x) then o q(x) | a(x) for any real number ¢ # 0, But
from these nonzero constant factors, the only common divisors of a(x) and b(x) are the
ones just listed earlier. We note that (x ~ 1) (x* - 2) is divisible by every common
divisor of a(x) and b(x). Thus we can expect (x ~ 1)(x? - 2) to be a candidate ft
greatest common divisor of a(x) and b(x). o
EXAMPLE 2. Consider the polynomials

a(x) = (Bx+2)(x + 1)(x? - 4),

b(x) = (3x + 2)(x - 2)(x2 + 3).
Asetof common divisors of a(x) and b(x) is {(3x + 2), (x~2), (3x + 2)(x - 2)}. Again
a nonzero real multiple of each of these common divisors is again common divisor.
Thus, upto constant factors, (3x + 2), (x - 2) and (3x + 2)(x - 2) are the only common
divisors of a(x) and b(x). Again, (3x + 2)(x - 2) is divisible by every common divisor
of a(x) and b(x).

The polynomials behave very much like integers and the above two examples tell
us that it is possible to imitate the notions of ged and 1 cm in Z to define ged and 1 cm
of polynomials in R[x].

Definition 3. Let a(x) and b(x) be polynomials in R[x]. A polynomial g(x) in R[x] is
called a greatest common divisor of a(x) and b(x) if

(i) q(x) | a(x) and g(x) | b(x), and

(if) whenever r(x) | a(x) and r(x) | b(x) then r(x) | g(x).
Thus g(x) is a common divisor of a(x) and b(x), and every common divisor of a(x) and
b(x) is also a divisor of g(x).

We have already observed carlier that whenever g(x) | a(x) then ag(x) | a(x) for
every a# (). Hence if ¢(x) is a common divisor of a(x) and b(x), ag(x) is also a common
divisor of a(x) and b(x) for every a # 0. Therefore we observe that if g(x) is a ged of
a(x) and b(x) then ag(x) is also a ged of a(x) and b(x) for every real number a # 0. This
shows that ged of two polynomials is not uniquely determined. It 1s determined only
upto a constant real factor. However, if we require that the leading coefficient be 1.
then ged of a(x) and b(x) is umiquely d ined. A ged of two poly ials that has
leading coefficient 1 is called rhe ged of the given polynomials.

A polynomial a(x) whose leading coefficient is 1 is called a monic polynomial.
Thus the ged of two polynomials is a ged which is also monic.
EXAMPLE 3. Find the ged of
a(x) = (3x + NE3x + 2= 3)
b(x x + Dx = V3P (x—4).
SOLLTION, A set of common divisors of a(x) and b(x) is
{Gr+ ). (x=V3). Gx+ Dx-V3)}
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These are the only common divisors of a(x) and b(x) upto constant real factors. Hence
aged of a(x) and b(x) is (3x + 1)(x - V3). We also observe that (x + (1/3))(x~ V3) is also
a ged and it is monic. Hence the ged of a(x) and b(x) is
(x+ 13)x-V3).
‘The least common multiple of two polynomials may be defined imitating the definition
of lem of two integers.
Definition 4. Let a(x) and b(x) be two polynomials in R[x]. Then an element g(x) of
RIx] is called a least common multiple of a(x) and b(x) if
(0).a(x) | g(x) and b(x) | g(x), and
(if) whenever a(x) | n(x) and b(x) | r(x). then g(x) | r(x).
We also observe that whenever g(x) is an lem of a(x) and b(x) then 0g(x) is also an
1 em of a(x) and b(x) for every o # 0. Thus the 1 cm of two'polynomials in R(x] is not
uniquely determined but only upto a constant real multiple. If we require that 1 cm of
two polynomils be monic, then it is uniquely determined. Such an lcm of two
polynomials is called the lcm of the given polynomials.
EXAMPLE 4. Let us consider
a(x) = (2= 2)(x- 17
b(x) = (- 2)(x*- 1).
If we take
: ) = (= 2)(x - 1Pz + 1),
then a(x) | g(x) and b(x) | g(x). If we drop any factor of g(x), then the resulting polynomial
is not divisible by at least one of a(x) and b(x). Thus g(x) is the lem of a(x) and b(x).
EXAMPLE 5. Find the lcm of
a(x) = (3x + 2)(x + (-4
b(x) = 3x + 2)(x - 2)(2= I).
SOLUTION. If we take
q(x) = Bx+2)(x - 1)(:*-4),
then g(x) is a lem of a(x) and b(x). Hence the lem is given by
(x+23) (- 1)(a2 - 4).

EXERCISE 10.4

1. Find the ged and lem of a(x) and b(x) in the following set
(@) a(x) = (2 +2)(x + 9)x* ~ 1), b(x) = (2 + 2)(x - 1)(x* + 2)
(®) a(x) = (o + 20~ )2 — x - 1), b(x) = (x + 4) (62 - Sx— 4)
(©) ax) = (V26 - 5x + 3V2) (2 - 9), b(x) = (22 - 2)(x - 3)
(@) a(x) = (1232 - 5x - 2)(9x + 5x - 4),
b(x) = (42 + Sx + 1) - 122 + 47x - 60)
© a®=x~1,bx) =2~ +x-1
) alx) = (V2x + 2)( + 1)(x = 2)2, b(x) = (x + V2)(* + £yx — 2)
®) a(0) = (32 + 2V3x + 1x +4x +3), b(x) = (x + 1V3)(x + 3)
(h) a(x) = (V32 + 4x +V3)(x® + 62 + 8), b(x) = (2 + 4x) (Vdx + 1) (x +¥5)

2. If p(x) is a ged of a(x) and b(x), show that p(x) is also a ged of aa(x) and Bh(x) where &
and B are nonzero constants.
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10,6 EUCLID’S ALGORITHM

4(x) and r(x) in Rfx] such that
a(x) = b(x)q(x) + r(x) )

where
r(x) =0 or deg r(x) < deg b(x). @

Suppose p(x) is a ged of a(x) and b(x). The definition of the gcd of two polynomials
shows that p(x) | a(x) and p(x) | b(x), and every polynomial /(x) dividing both a(x) and
b(x) also divides p(x). The relation (1) gives

r(x) = a(x) - b(x)q(x). 3)
Thus p(x) | r{x). If I(x) | b(x) and I(x) | r(x), then the relation (1) shows that I(x)la(x)
Hence p(x), being the ged of a(x) and b(x), is divisible by I(x). Thus we have shown
that p(x) | b(x), p(x) | r(x) and every polynomial /(x) dividing both b(x) and r(x) also
divides p(x). Now it follows that p(x) is a ged of b(x) and r(x).

Conversely, if p(x) is a ged of b(x) and r(x), then P(x) b(x) and p(x) | r(x). This
implies that p(x) | a(x). If (x) | b(x) and I(x)| a(x), then I(x) | r(x) by (3). Since p(x) is a
ged of b(x) and r(x), [(x) | p(x). Thus p(x) is also a ged of a(x) and b(x).

Thus the relation (1) implies that p(x) is a ged of a(x) and b(x) iff it is a ged of b(x)
and r(x). Moreover, relation (2) shows that deg r(x) < deg b(x). Thus we have been
able to reduce the problem of finding the ged of a(x) and b(x) to the problem of finding
the ged of polynomials of lower degree. Further application of division algorithm (1)
brings in further reduction in degrees of polynomials. These ideas are clarified in a
few examples.

EXAMPLE 1. Find the ged of the polynomials

a(x)=x* -2 - + 4x-2,

b(x)=x! -3 + 2.
SOLUTION. We shall begin with the division of a(x) by b(x). We use synthetic division
for finding the quotient ¢,(x) and the remainder r,(x).

1-(0+3+0-2)

1-2+2+4-4
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The division table shows that
=1
R =-2(3 -2 -20+2)

Thus we can write (
a(x) = b(x)g(x) + n(x)

=

where
deg ry(x) =3 < 4 = deg b(x). ot oot
But henlnhﬁonnfdlcfomﬁ)hnlds.wehav{eseenlha! (x) is a ged of a(x)
b(x)li]ﬂ":! is a ged of b(x) and ry(x). Thus it is sufficient to find a ged of b(x) and ry(x).
Again we use division algorithm to find the quotient g(x) and the remainder ry(x)
such that -
b(x) = ry()g:(x) + r2(x). . S
i f two polynomials is determined only upto a constant multiple, itis sul icient
ls;m:elgc?ofb(x) and the polynomial x° — x% - 2x + 2 (see exercise 2 in section
10.5). We use synthetic division.
140-3+0+2
-2-2
+2+2
1+
1+1+0+0+0

1-(1+2-2)

The division table gives us
@x)=x+1,
r(x) =0.
Thus the relation (5) reduces to
b= -2 -2+ 2)(x + 1). (6
The relation (6) shows that x* - x2 - 2x + 2 is a ged of b(x) and ry(x). Hence it is also a
ged of a(x) and b(x). Since the leading coefficient of x* — 22 = 2x + 2 is 1, it is the ged
of a(x) and b(x).
EXAMPLE 2. Find the gcd of
a(x) =37 +x+4,
b(x) =2 -x*+3.
SOLUTION. We begin with the observation that

a(x) = (%J b(x) + ry(x) n
3 1
where r.(x)=5x1+x—5. )
Hence it is sufficient to find a ged of b(x) and r(x). But
4 14 ¢
b(x) = (gx - ?) ry(x) + ra(x) o)

where rx) = (?) (x+1). (R0
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Itis sufficient to find a ged of r)(x) and ry(x). We can now write
a [(2lek 9)((3),_1)(20
nx) = ((ZJX 2J(x+ I)=(ﬁ]((3),__2_](?)(x+ I
=f2N((2): 4
=20)\2) 7

This relation shows that ry(x) | ry(x). Hence ry(x) is a ged of ry(x) and ra(x). Retracing
the steps back, we conclude that ry(x) is a ged of a(x) and b(x). Hence the ged of a(x)
and b(x) is X + 1.

Previous examples bring out the main feature of Euclid’s'method. The problem of
finding a ged of a(x) and b(x) is successively reduced to a problem of finding a ged of
Jower degree polynomials, until we come 10 a stage where one of the polynomials
divides the other.

Theorem 2. (Euclid’s Algorithm) Let a(x) and b(x) be any two polynomials with real
coefficients. Define polynomials g,(x) and r(x) recursively by
a(x) =b(x) g,(x) + 1y (x)
b(x) =1 (x) g,(x) + r(x)
r(x (x) g3(x) + r(x)

on

r 2 () =1y (x) g (x)

where deg 7, , (x) < deg ri(x) forj= 1,2, ...,(k = 2). then r; _,(x) is a ged of a(x) and
b(x). 5
Proof. We begin with the observation that there is always an integer k such that ry(x) =
0. Since deg r, , y(x) < deg r,(x), we can find / such that deg r,_ (x) = 0. Hence r;_ y(x)
= ¢ for some constant ¢. If ¢ = 0, we can take k = - 1 since r;_ (x) = 0. If ¢ # 0, then
11-2(x) = c,dx) and hence r{(x) = 0. We can now take k = /. In any case, we can find k
such that ry(x) = 0. .

Suppose p(x) | a(x) and p(x) | b(x). Then

() | [a(x) = blx)gy(x)].
Thus p(x) | ry(x). Now, since p(x) | b(x) and p(x) | ry(x), we get
) | [B(X) = ry(x)ga(x)).

Hence p(x) | 5(x). Continuing the process, we conclude that p(x) | rix) forj= 1,2,
3k-1.

Conversely suppose p(x) | r; _1(x) and p(x) | r _5(x). Since

ri - 3(%) = r2(0gg - (X) + gy (x),

we conclude that p(x) | r; _3(x). Continuing the we
and finally p(x) | a(x).

Thus p(x) is a common divisor of a(x) and b(x) iff p(x) is a common divisor of
ea(x) and r; (x). But the choice of & is such that
) = 1 (0gex). (12)

lude that p(x) | b(x)
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Thus rg_3(x) | r_5(x). This implies that 7, . ,(x) is a common divisor of r¢_5(x) and
i-1(x). Hence ry_y(x) is a common divisor of a(x) and b(x). )
Moreover, (12) shows that ry _ ((x) is a ged of ry _o(x) nnd_ e 1) If I(x) is a
common divisor of a(x) and b(x), then I(x) is also a common divisor of r; _(x) and
- 1(%). Since ry_ (x) is a ged of ry_5(x) and rg_ (%), it now follows that {(x.) 1re_y(x).
Thus 7, _(x) is a common divisor of a(x) and b(x), and any common divisor I(x) of
a(x) and b(x) also divides r; _ (x). We conclude that 7, _(x) is a ged of a(x) and b(x),
Q
* EXAMPLE 3. Find the gcd of a(x) and b(x) where
a(x) =x° + 9 + X + 92 -2x- 18,
bx)=x*-4. .
SOLUTION. Our strategy is to use Euclid’s algorithm. The division process is shown
in the following table

1-(0+0+40+4)| 1 +9+1+9-2-18
-4+36
P +0+0
+0+0
+0+0

1+9+1+9+2+18

@) =x+9, r(x)=x>+ 9% + 2+ 18.

1--9-2-18)[1+0+0+ 0- 4
- 18 + 162

-2+ 18

-9 +38l

+79+ 0+ 158

1-9

Ga(x) = x =9, ry(x) = 7922 + 158 = 79(x? + 2).
But nx)=x+92+2x+18

=x(x2+2)+9(2 +2)
=(x+9) (x2+2).
Hence

r(x) = U79)(x + 9) (79)x* + 2)
= (U/79)(x + 9)ry(x).
By Euclid's algorithm, ry(x) is a gcd of a(x) and b(x). This implies that x? + 2 is the ged
of a(x) and b(x).

If m and n are integers, and if d is a ged of m and n, then [ = ? is an lem of mand n.

‘This relation between lem and-ged is also true for polynomials. If p(x) is a ged of a(x)
and b(x), then,
a(x) b(x)

= p(x)

[Facronanon o Poumounis a1

is alem of a(x) and b(x). Thus a ged p(x) and a lom g(s) of two polynomiats a(xy and

B(x) are related by

op(x)q(x) = a(x)b(x) (13)
where a# 0 is a real constant (A proof of this is relegated t i
chapter). This relation (13) is often used to fi omblﬂnsutheendofum

ind a lcm of two polynomials,
EXAMPLE 4. Find the lcm of

a(x)=3x*~4x3 + |,
bx) =4 -5 -2 4 x4 ],
SOLUTION. We first fi

ind the ged of a(x) and b(x) using Euclid's algorithm. We can
write

a(x)-(z b(x) + 1 2
=13 2) -3243x-),

Hence itis sufficient to find a ged of b(x) and r

. .(x)=x3-3x2*31-l.Weusesynme6c
division.

1-G=-3+1{4d4- 5- 1414+
+44+ 17
-12-21
+12 +2)
4+ 7+ 8-16+8
This division process shows that .
bx) = (Ax+ 1)(* -3 +3x~ 1) + 82 - 16x+ 8
T=@x 4T x- 1P+ 8(x - 12
Hence the problem is now reduced to find a ged of (x - 1)° and 8(x — 1)%. We observe
that (x — 1)? is the required ged of a(x) and b(x).
Now we use the relation (13) for finding the lem of a(x) and b(x). Since (x — 12is
the ged of a(x) and b(x), it is a factor of both a(x) and b(x). We use synthetic division
for finding the remaining factor. Division of a(x) by (x—1)? is as follows.

1-2-10|3-4+0+0+1
-3-2-1
+6+4+ 2
3+42+1+0+ 0
Thus we get
3¢ -4+ 1 = (3% + 20+ D(x- 12
Division of h(x) by (x - 1)? is shown in the following table.

1-Q-D ]| 4-5-1+1+1
e T |

+8+6+ 2

4+3+1+0+0

This gives
AP -5 +x+1=@2+3x+ Dx-172



412 Gt o T o Pre-Coutzoe Maneniancs
An lem of a(x) and b(x) is given by )

q(x) = a((:—)_bl();—) =G+ 20+ 1) @2 +3x+ 1) (x- 1)
The lem of a(x) and b(x) is

2o (2)ea ()22 42 (1] el
(’ "[3)”(3])( +(4)"+ =7 |
EXAMPLE 5. Find the ged and the lom of
a(x) =2x7 + 188 + 6x° + 194 + 135 + 3% + 9x + 2,

b(x) =2 + 192 + 13x + 2.
SOLUTION. It is sufficient to find a ged of

ay(x)=x" +9x8 + 35 + (]—29')1‘ +(l—2%)13 ‘*(%}XZ +[%)—‘+|
b(x)=x+ (%}r’ +[%)x+ 1.

We use synthetic division

1-¢92-12-n|1 + 9+ 3+192+ B2+ W2+ 92+ 1
- 1+ 12— 54+ 81 ne
- 1327+ 134 - 658 + 1316 - 1332
- 192 + 19/4 - 958 +19/16 - 19732

|l - 12 + 514 - 18 + 1/16 + 15/32 +135732 + 15/16

Thus the remainder r(x) is given by

15
nx = (E) (2 +9x+2).
Now it is sufficient to find a ged of by(x) and x* + 9x + 2.

1-(9=-2)|1+192 + 32+ 1
- 2-1
-9- 9

The division table shows that x? + 9x + 2 divides b,(x). Thus the gcd of a,(x) and b;(x)
and hence that of a(x) and b(x) is x* + 9x + 2.

Now we get other factors of a(x) and b(x) dividing them by x? + 9x + 2.
1-(9-2) |2 +18+ 6+19+13+3+9+ 2
-4+0-4-2+0- 2
~18+ 0 -18-9+0-92
[2+0+2+1+0+1+0+ 0

- 413

-msshows'-ha‘
) = (2 +9x 4 225 + 23 4 2 4. 1)
=2 +9x+2)23 + DE2+1).
similarly dividing b(x) by 2+9x+2 we have.

1-(9-2)| 2+194+ 134

We see that
bx) = (2x + 1)+ 9x +2)
An lem of a(x) and b(x) is given by

e a(x) b(x)
A= T or 2 @+ D +9%42) 28 + 1) (2 + 1)

Hence the lem is

1
(x+ E)(xlwuz;(ﬂ* %)(Bn).

1. Find the ged and the lem of the following polynomials:
(@ a(x) =4 + 52+ Tx+ 2, b(x) = 162> + 10x + 7
(B) a(x)=2¢ ~ 132+ x+ 15, b(x) = 3" - 263 — 1762 4 120+ 9
(©) ax)=x3+53 -2, b(x) =26 -5 + |
(d) a(x) =22~ 5x% 4 3, b(x) = 3% - 52 + 2
(€) a(x) =20+ 9¢ + 8x = 5. b(x) =¥ + 5x+ 6
() a(x) =2 + 9% + 8x — 4, bx) =X + 51 + 6
@ a0 =" +x'+y+ L bx)=x+1
(h) a(x) = x'0 = 3%+ 328 — 117 + 1168 = 112 + 192 - 13° + 82 - 9x + 3
blx) =%~ 365 + 3¢ - 97 4+ 520 - Sx + 2
Find a pair of polynomials a(x) and b(x) when the ged and the lcm are given by
(a) the ged (a(x), b(x)) =x+ 1,
the lem (a(x), b(x) = x* + 4° + 57 + 8x + 6
(b) the ged (a(x), b(x))=x*+ 1
the lem (a(x). b(x) =2* - 1
(c) the ged (a(x), bx)) =x+ |
the lem (a(x), b(x) = (¢ + 32 + 2)( + 1)
(d) the ged (a(x), bx) = (x+ 1)?
the lem (a(x), b(x)) = (1 — 1 +3x+2)
3. Find a pair of polynomials a(x) and b(x) in the following cases
(@) a(x) + b(x) = x* — 1. the ged (@(x). b(x)) =x+1
(b) a(x) + bix) = (2 + 1)(x + 1) the ged (a(x), bx) =x +1

~
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@ 4x)+b(x)=(,\3+Sx+6)(J’—l).lhegvd(dx);,b(x))=(ﬂz+x-2)
(@) a(x) + b(x) = x5 - 27, the ged (o), b)) =x = 3

1 Givenp(x)andq(x)smwthum:xinlp-iro(polynmniﬂsa(x)md
a(x) + bx) =plv)
ged (atx), bx) = g(x)
iff  g(olp(x) -
2 Givcnp(x)mdq(x).shwvhuthueamnwxof
ged (a(x), b(x)) = plx).
lem (a(x). b(x) = g(x)
iff  plolg(x). )
3. Let p(x) be a ged of a(x) and b(x). Show that there are polynomials /(x) and m(x) such
that

b(x) such that

polynomials a(x) and b(x) such that

a(x)l(x) + bx)m(x) = p(x)
4. Find I(x) and m(x) such that
(o= D2 10) - (x + 1Pm(x) =1
holds as an identity. .
5. We say a(x) and b(x) are relatively prime if ged of a(x) and b(x) is a constant. Suppose
a(x) and b(x) are relatively prime and
a(x)lb(x)c(x),
for some polynomial c(x). Prove that a(x)ic(x).
6. 1f plx)is a god of a(x) and b(x), prove that £ and :"‘) are relatively prime.
7. 1f g(x) is a Jem of a(x) and b(x), show that g(x)r(x) is a lem of
a(x)r(x) and b(x)r(x) for any polynomial r(x).
8. Prove that for any two polynomials a(x) and b(x)
a(x)b(x) = ap(x)q(x)
where a is a real, p(x) is a ged of a(x) and b(x), and g(x) is a lem of a(x) and b(x).
9. Let o and B be distinct zeros of a polynomial p(x), and suppose
Pl = (x - a)glx).
plx) = (x - B)rix)
for some polynomials g(x) and r(x). Prove that the remaining zeros of p(x) are the roots
of the equation

q(x) - r(x) =0.
10. Prove the division algorithm in R[x); given polynomials a(x) and b(x) in R[x], there are
unique polynomials g(x) and r(x) such that
a(x) = bx)q(x) + r{x)
where either r(x) is the zero polynomial or deg r{x) < deg b(x).

11. Find a polynomial p(x) of degree 5 such that (x - 1)’ divides p(x) - 1 and x* divides p(x).

12. Show that for every integer n,
x _1-2*
I-x (1-x?

is a polynomial of degree n - 2.

[Fomaon o Pourwouns|

13. Consider the cubic equation
ac’ +3bx +3cx+d =0
where ac - b* # 0. Show that this equation has two equal roots iff
(be ~ad)? = 4(ac - B?) (bd - c3),
and in this case the equal root is given by
PO . A
T 2ac-b%) "

14. Suppose p(x) is a polynomial over Z such that there exists a positive integer k for which
none of the integers p(1), p(2), ..., p(k) is divisi}yle by k. Prove that p(x) has no integer
zeros.

15. Find all polynomials p(x) such that

Plg(x) = g(p(x))
for every polynomial g(x).
16. Find a necessory and i dition that the p
ax* + bx* + e +dx + e(a#0),
is of the form p(g(x)) for some quadratic polynomials p and q.

17. Let p(x). g(x) and r{x) be quadratic polynomials with positive leading coefficients and
having real zeros. Suppose cach pair of them has a common zero. Show that p(x)
+ g(x) + r{x) has only real zeros.

18. Let p(x) be a polynomial in Rx] of degree m, let a, a,...,0, be n distinct real number.
Prove that

415

PlX)=ag+ay(x - @) + ax(x - Nx - o) + ...
+a(x—0y) (x- @) ... (x- @),
for some real numbers ay, ay,..., G,.

19. Given n + 1 distinct real numbers @;, 0,.... &  ; and real numbers B, B,....,B, , ; (not
necessarily distinct). show that there is a unique polynomial p(x) of degree less than or
equal to n such that

pla)=B,1<i<n+1.
20. If ais a zero of
PO=x"4a, X" '+ .. +a
where a, may be complex, show that
lad € max (1, lagl + layl + ... + la, _y1).
Polynomials in two variables An expression of the form

T 5 V]
pnj)= I I cuxty
£=01=0

is called a polynomial in two variables. Here the coefficients Cyy may be integers, rationals,
reals or complex numbers. As in the case of polynomials in one variable, we have
Z[x, y). Qlx. 3], Rlx. y] and Clx, y). We can also view, for example, R[x, y] as the set of all
expressions of the form

(N +a, (Y + .+ aglx)
where a(x) are in Rix]. Similarly R[x. y] can also be thought as the collection of all
expressions of the form LI,

b + by (YR Y+ boly) .
where b(y) are in R[y). The degree of a term of the form cyx'y' is k + lcy # 0). The
degree of p(x, y) is defined as the maximum of the degrees of its terms.
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ymmetric nomial in two variables x and y, i.e. p(x, ¥) = p(y, x),
2 mﬁ?y; i: a factor ofP:.yr y). Show that (x - y)*is a factor of p(x. y). )
22, Consider the polynomial
pry =Xy e )
Express p(x, y) as the sum of squares of three polynomials over R in xand y.
23. Define
Pl y) =y + 0% Q) =2 41y + Y
For each n, consider F, and G,
Fixy)=(x+y) =x"=y"
Gy(x.y) = (x+y) + X"+ 5"
Prove that, for each positive integer n, either F" or G is a polynomial in P and Q over Z,

24, Expressx +y, y+ 0, Ux+ Uy, 2+ 3 +xy,

X +y* + 2y + 07 as polynomials in two variables P and Q where
P(x,y)=x+y
Q(x,y) =xy-

Can you conjecture something?

25, Let p(x) be a polynomial of degree n over Z. Suppose p(k) is a prime number for 2n + |
distinct integers k. Show that p(x) is irreducible over Z ; i.e. we cannot find nonconstant
polynomial g(x) and r(x) in Z(x). each of degree less than n, such that

Px) = grix),

26. Find all polynomials p(x) such that

p() = pl)p(x + 1).

27, Suppose p(x) is a polynomial which leaves remainder 2 and 1 when divided by x - | and
x -2 respectively. What is the remainder when p(x) is divided by (x - 1) (x - 2)?

28. Letay, a;.....a, be distinct integers. Show that the polynomial

(=@ (x=a ... (x-a ) +1
is irreducible over Z.

29, Suppose p(x) is a polynomial in Z{x] such that p(0) and p(1) are odd numbers. Prove that
p(x) has no integral zeros.

30, Determine all polynomials p(x) such that

P2+ 1) = (p(x))* + 1 and p(0) = 0.
31. Let p(x) be a polynomial in R[x) such that p(x) 2 0 for all real values of x. Prove that
P =q200) +g200) + . 4 g7
for some polynomials gy, g2 ...\Gn:
32. Let p(x) be the polynomial
PR =ax"+a, X'+ . +ax+ay
of degree n and a, are real or complex numbers. Let @), 0, ..., @, be the zeros of plx).

Prove that
.. a;’
fa= n- |
i=1 a,

a,_2
I oo
15i<jsn a,

9
@003 ... Oy = (1) 25
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3. ma,bmdcbemlnumbensuehm-xubn-o

CY)
a*+b5+ e
S [a H; = ][aubzlﬂz]
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Prove that

34, Show that the zeros of the polynomial

p(x):a,\"+a,,_.r"+...4¢,:3+11+x-rl

with real coefficients a,, a, _,, ..., aj, cannot all be real
35, Let p(x) be a monic polynomial in ;
i Z[x]. Prove that an

Y rational zero of P(x) must be an
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11.1 INTRODUCTION
We referred in Chapter 1 to certain basic properties of the real number system. One of
the most important properties of real numbers is that these numbers have an ordering,
We can speak of a number a to be larger or smaller than another number b. This
concept of ordering in R is, as we saw in Chapter 1, an extension of the natural ordering
in N. Recall that as we extended N to larger and larger systems upto C through Z, Q
and R we were able to keep the natural ordering at all stages except the last one. We
now denote by R* the set of all positive real numbers, and by R the set of all negative
real numbers. Thus R is the union of R*, R~ and {0}. Given a real number a, cither a
is in R* or ais in R~ or a = 0. One and only one of these possibilities is true. We note
that, given any two real numbers a and b, a is said to be less than b (or b is greater than
a) if b - a is a positive real number. We write this a < b (or b > a). We record the
following important properties of this ordering in R.
(i) Given any two real numbers a and b, one and only one of the following three
conditions is true
a<bora=bora>bh.

(i) If a < b and c is any real number, thena +c<b+c.
. (i) ) a < b and ¢ > 0, then ac < bc.

() Ifa>0,b>0and a<b, then (Va) > (1/b).

(v) For any real number a, a* 2 0.

INEQUALITIES

11.2 SOME BASIC INEQUALITIES

‘We know that a? > 0 for any real number a. This is an important inequality in itself. As
a consequence of this property, we can derive many inequalities.
Let ¢ and d be any two real numbers. Then we have (c - d)? 2 0. Expanding this, we

get

2-2ed+d20.
L
So, . %ch. m

If a and b are nonnegative reals, by taking ¢ = Ja,d= b in the relation (1), we

get,
418

— 419
JapEtd
2 @

a+b
Ha,menumber 2

. iarly Jab is called the Geometric Mean (GM.) of q and b, i
that the geometric mean Of tWo nonnegative real numb.ersni"ssx i &)
an (and utmost equal 10) their arithmetic mean. Since 8 sralies

is called the Arithmetic Mean (A.M.) of ¢ and b,

Z+dz
£ =cd iffc=d,
jtfollows that
& ‘a+b
ab = 5 iffa=b

for any WO nonnegative real numbers. Thus equality holds in Q)iffa=b.

Inequality (2) has an i ici Let us consider a semici
ith diameter ,w_‘ If C is any point on the semicircle, then ABC forms a ﬁgh:\alu‘nng'ltel;
rriangle with the right angle at C. Let CD be the perpendicular to AB dropped from C.
LetAD=aand DB = b (See Fig. 11.1). '

g

|
' A D B
fo— @ —sj————— ) ————ni

Fig. 11.1

The triangles DAC and DCB are similar, since ZADC = ZBDC, ZDCA = ZDBC
ad ZDAC = ZDCB. Hence

; DA_DCT
| DC DB
Therefore DC? =DA - DB =ab
d bence DC = Jab
Ifris the radius of the semicircle, then DC < 7. But r= ath
Thuswe get  Vab < “—:b

dicolar is

* Thus we can interpret the inequality (2) as the that the p
e shortest distance from a point to a straight line. We also observe that DC = riff D
Bthe centre of the semicircle. And this is equivalent to a = b.

, Moke. Compare this with the construction 10, Section 4.5 for the mean proportional between
™0 segments.

BXAMPLE 1, For any three positive reals a, b, and ¢ show that

@+ +22ab+be+ca 3)
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SOLUTION. Using the inequality (2), we have,
2 2 2 2 2
abs"—;L.bcsg—;f—.cas%
Adding these three relations, we get
2 2
d+bt+oasa—;—h-
=@+ +

EXAMPLE 2. For any positive integer n, prove that

" R
(“I] <('*u:] @
SOLUTION. Let a and b be positive reals such that a < b. We have
Pl gt =(b-a) (B +abt "+ .+ a).

2

2
b +cd  F+d
s

2 2

By a repeated use of a < b we get
<t +ab~'+. . +a<@+Db
Multiplying by b - a, we get
(+D)a" (b-a)<br*'-a*<m+]) (b-a)" )
1'akilga=[l+—l—) andb= (.,1] in (5), we get
n+l n

1 \(1 1 1y i =
‘“”(‘*m] [;'m}(‘*;) ‘[““J
1IY(1 1
<(n#|)(“’;) [;—;Tl)
o el nel "
l[uL] <(1+1J -(14--—'—) <l[1+l) .
n n+l, n n+l n n

The second part of this incquality reduces to

(20 )

This gives

which gives

and this is precisely (4).
EXAMPLE 3. (Weierstrass inequality). If a;, ay. . . ., a, are positive real numbers,
each being less than 1, and if s, = a; + G + ... + a, prove that,

() 1-s,<U-a)(-a)---UI-a)< 6)

I+s,

(i)l +s,<(+a)(+ay)---(I+a)< 7 !
Y
where 5, < I in (ii).

[pares.

. gLUTION. Wehave, (1-a)) (] -4~
x >1 —(::r(m;»§ i Thtae
similarly,
(=200 =a) (1-a)> {1 - (g 4 ay) (1 -
=1-@ +a)-a,+aya,+ a) ol
>l-(a,+a2+n3).
Continuing, We get
(d-a)(-a)---(1-gy>1-
similarly, we can prove that,
L (+a)(+a)..(1+a)>isy
Since 0 <a; < I'forj=1,2, ..., n, we also have =
(I-a)(+a)=1-al<1

Therefore,

1
l-ag< 1+ag,< !
1+ 1

forj=
~q, orj=1,2,...n.

e
4
Thus (1 -ap) (1 -a2) -~-(l—a,,)<\l
(l+a|)(l+n,)-~(l+a_)

1

l+s,

The other result may be proved similarly. Note ho
the hypothesis s, < 1. ever thatat

EXAMPLE4.Ifa;2 1 forj= 1,2, .., n, prove that

U+ap(+a)~(I+a)2(]+a ta+az+ - .“,.)L
1+

[Note that this is a stronger inequality than the left part of (7)]
SOLUTION. (1+ a)) (1 +ay) - (1 +a,)

2 (1)

+1

(I +a,+ay+..+a,).

421

(a'*“2+"‘+ﬂ.)=l—:,,

the last step one uses

EXAMPLE 5. If a. b. and ¢ are positive numbers such thata + b>c, b + ¢ >aand

a+c>b, prove that
Z 1 1 I () |

+ + >+t
b+c-a c+a-b a b

a+b-c

(]
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The required incquality is equivalent 10
1 __|__+__l___+_——| )+
b&c-¢+c+a-b c+a-b a+b-c
2
1, L ).2.2,2 ®
a+b-c b+c-a) a b ¢

Consider the first term on the left hand side;
1 i 2

e o e 52 e
b+c-a*c+a-b (c+a-b)(c-(a-b)

c
- zcz—(a-b)1 ’

Since 2 — (a — by < c and & - by? (because of the hypothesis b + ¢ > a), we get
1

1 2
. ¢ >=.
b+c-a c+a-b ¢

Similarly, we get
1 1 2 1 1 2
P, B >Zand ——+ >=.
c+a-b a+b-c a a+b-c b+c-a b
Adding these we gét the inequality (9).
mm‘.lfa.b,mdcmposiu'wrzalnwnberslhmpmvelhat
a+c _a
—— i >b
o b+c<b ¢
a+c_a
i) ——>— if a<b
(")b+c b g

SOLUTION. To prove (i) we start with a > b.
.~ ac>bc. Soab +ac>ab+ bc.

- ab+c)>b(a+c).

a+c _a

<—.
b+c b

‘winch means
(i) is similar.
EXAMPLE 7. For any n, prove that

S S e
2Jn+1 24 2n \[2n+1]
SOLUTION. Start with
2k-1 2k
—_—<
2k 2k+1
which can be verified to be true by cross-multiplication. Then
2n-1 246 2n

2 423

1
5;<
Henc® 2n+1
Agein since -
@+ s,==22. 2n-12n+]
46 2n-2 n
and because of the verifiable inequality
2k+1_ 2k+2
2k 2k+1
we get, as before
((2n+1).:,,)2>2129..._2"‘l 21 2n+1 2n42
2345 2m-221-1 21 241
=2n+2-n+l
=
. Jn+1 1
This gives Sp > 2"_H>2 e

the last inequality being verifiable by cross-multiplication.

EXERCISE 11.1

Prove the following inequalities.
. a*+2ab+4b* 20 for all reals a and b.
2, For any real number a,
da*-4a’ + 5a° -4a + 120,

2
—a——_‘Sl for any real a.
1+a" 2
a*+b* 2 a’b + ab’ for all real numbers a and b.
(a+b+c)P<3(@+b*+c?).ab,cink

-

n s

Lo

1
at+ 5 2 for all real a.
I1+a”

8, 28* +b? + ¢ > 2a (b +c) for all reals a, b, c.
9, @+b+c*>2(a+b+c)-3forallrealsa, b, c.
10. a+b+u2ym+\/h—r*‘/c_uforposilivea.b.a
X il d 1 1 1 -
I —4—+ =2 + for positive a, b, c.
a b ¢ Jab bc Jea
12. 1+a)(1+b)24ifa>0,b>0andab=1.
13, @+ b2+ > 3ifa, b, c are nonnegative and a + b+ ¢ 23.
2

W @422 ifasb2e20.
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A
15, .{+Mz% ifa+b2c20.

2
16. <
at+b4> T ifa+b2c20.

17. (b+c-al +(c+a-b+(a+b-c)*2ab+bc+caforanyrealsa, bandc.

18. If a,b,c and d are real numbers greater than 1, then 8(abed + 1) > (a + 1)(b + I)(c + 1)
@+1).

19. For any positive real a, b, ¢

B+ F+add dt+b

+ L
b+c c+a a+b

20. For any positive integer n, n"2 < n! forn > 2.
21. For any positive a, b and c, (a + b) (b + ) (c + a) 2 8abc.
22. For any positive a, b and ,

a?h? + b’ + a* 2 abc (@ + b + ).

2a+b+c.

1
23. If a, b and c are positive such thata + b+ ¢ = | thenab + bc + ca < 3

24. Letay, ay, ...a, and by, by, ..., b,, be two sets of reals such that b, > 0 for 1 €j < n. Letm
and M be respecti the mini and i of n fractions

4@
b'b

a +
Prove that P A Skl R
" b,
25. A quadrilateral is called convex if both the diagonals lic inside the quadrilateral. In any
convex quadrilateral, prove that the sum of two diagonals is less than its perimeter but
larger than half the peri Recall also the definition of convex polygon under Theorem
17, Section 3.3.

26. Prove that

@ (1 +b*) + b2 (1 +a*) (1 +a*) (1 +b*) for any reals a and b.
27. Prove that

al+lbl+lcl2 b+

for all reals a, b, c.
28. Prove that
(al+1b)(bl+lch(ci+lal)28labcl.
29. Prove that
be , ca , ab
b+c c+a a+b
for any real numbers a, b and c.
30. For positive reals g, b and ¢, prove that
ab (a +b) + be (b +c) + cac+a) 2 6abc.

1
S lavb+o)

an Ha‘4b7+cz=lpmvelh:l—%Sab$bcbmsl,

- The proof of this inequality is relegated to the problem at the

aanes

113 AM-GM INEQUALITY =

We have seen in section 11.2 that for any two positive reals ¢ and »
a+b
52 ab. a
) )
This was derivedasa conseql{ence of the non-negativity of
Thisis indeed true for any finite set of positive real nu‘:nberﬁz““n:?f i
@ aren real numbers, the real number e
4+a+..+a,
Ty
‘uclﬂﬁ’ the arithmetic mean of a, ay, ..., q,
‘wmzlrir mean as the real number
(a) ay...a,)'m,
A generalization of (1) to a set of n positive numbers ay, a,, ..., a, is the inequality.
. G tay+..+a, . )
T 2(@a .
This inequality is known as ‘Arithmetic Mean — Geometric
GM inequality for short). We write (2) also in the form

a)a;...a, < (M ",
n -
Equality holds in 3) iff &, =a, =ay = ... a,,.

- Ifa;20fori=1,2,

, we define their

@)
Mean Inequality’ (AM —

3

end of this chapter. We
3 P

EXAMPLE L. Show that an equilateral triangle is a triangle of maximum area fora

given perimeter and a triangle of minimum perimeter for a given area.

SOLUTION. If A is the area of the triangle with sides a, b and ¢ then A and s are

related by

study some applications of AM — GM inequality in the foll

Al =s(s—a)(s=b)(s-c) )
Using AM — GM inequality for the positive numbers s - a, s — b and s - ¢, we have

A:Sx{(x—a)(s;b)(s—r)}"=S{3:-2s}’= ‘
3

AR

This gives 5)

If p denotes the perimeter of the triangle with sides a, b, and ¢ then p = 2s. Hence (5)
takes the form

(6)
Thus given a perimeter p, the maximum possible area that a triangle of perimeter p

canhave is
12V3

. Using the condition for equality in AM — GM inequality, we se& that

iffs—a=s-b=s-¢
(77 St
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which!' . sensiffa=b=c.
2
mhngimpuiwp'ﬁemmﬁ; is'"ﬂnedbymequn.., 1
trilngleofs'de%.
Convérsely, given the area A, (6) shows that

p212834). o
Thus (7) gives a lower bound for the perimeter of a triangle in terms Of its areq_
Again this minimum perimeter p = y/12V3A is assumed for a given area iff
holds in AM — GM inequality; that is iffa=b=c.
EXAMPLE 2. Let a;, ay, ..., a, be n positive real numbers, and b, by, ..
permutation of these numbers. Prove that

Cquality
-~ by bea

g . a a,
bt e S
b b b,

SOLUTION. Using AM — GM inequality for n fractions <L, %2 %=

bl'b,"mb \ we get
Lhily 4o

b_b b, 2(“_1&
n

b b, "
Buta) ay...a,= b, by... b, since by, by, ... b, is a permutiition of ay, ay,

.-+ @, Hence
ﬁnRHSinlheaboveinequlilyisl.Wega

EXAMPLE 3. For any positive integer n, prove that
L@l <(n(n+ D
SOLUTION. We write
(2n)!=123456..2n-1)2n
=(1.35...2n- 1)} {246...2n)
=2"{1.35..2n- 1)} {1.2

...n)

345+..+Qn-1)T
But  135.(2n- "‘[%} .

123..n< [W“”T
n

‘We can compute these sums. We have
2143+ .. +@2n-3)+@2n-1)]
=[|+(2n—l)]+[3+(2n—3)]+.,.¢[(2n—3)+3]+[{2n—ll+ 1]
=21+2n +..+ 2n+2n=2n%
n terms

143+ +2n-1)=n
Similarly, we can compute the other sum to get
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1424, 4522041
O

-
2n)! oy (n(n+ Y
- (),

LE 4. Let the bisector of the angle C
ot ofa lrlangleABanmhuideABazD.
CD?<AC. BC
SOLUTION. Wehave  AABC=Apc +ABDC,
A denotes area. Therefore,

1 ; 1 ; 1 )
- ZACB=— = <
2 AC BC sin = 2AC'AD sin ZACD + 2 BCCDsin 2pcB

. ()
since CD is the angle bisector of ZACB,
c
A D B
Fig. 1.2
ZACD = 4"2“ and ZDCB = #,
Hence (8) reduces to
AC.BC.sin ZACB = (AC + BC) CD sin —4"2@. ©
Using the trigonometric identity
. ]
sm6=2sm3 cos;
we can write (9) in the form
24 BCsin £AE o # =(AC+BC) CDsin %CB.
1 ZACB 1 [ 1 1 ]
o008 —— = — 4 — (10)
D 2 2{AC  BC

Since ZACB

ZACB
is an acute angle, 0 < cos ~

< 1. This gives us

T g e
Eﬁ(ﬂ 8c)*\ac*Bc) *
l!iehslpanby the use of AM — GM inequality.
Hence CD*< AC BC.
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1. For positive real numbers a, b, and ¢ prove that
a+btrf2abcla+b+o)

2. Prove that (a® + b'P < (@ + B?) (a* + b*) for all real numbers a and b.

3. W ay, @, - a, are positive real numbers prove that

a,

3 1 1 1
(.Ig.¢1+m4¢.)(:‘-+;;+.“+—-.‘]le'z.
4. If a, b, c are positive, prove that

a b
—_—
b+c c+a a+b

€ ¥
=
2

a b c
S. For positive a, b and ¢, prove that ;+:+; 23.
6. Ifa>0,b>0and c >0, prove that
a+b b+c c+a
+——+—b—

26.

c
7. H a. band c are positive, prove that
(a+b+c)(ab + be + ca) 2 9abe.
8. If @, b. c are positive, prove that
2 2 2 9
= 2—,
a+b b+c c+a a+b+c
9. Ifa.b,c, are positive and a + b + ¢ = 1 prove that

Snchﬂ-a)(l-b)(l-c)S%,
10. If g, b and c are the sides of the triangle, prove that
@+b+cP221(@+b-c)(b+c-a)(c+a-b)
1L If a, b. c and d are positive, show that
1 1 1 1 16
——————— + B
b+c+d c+d+a d+a+b a+b+c a+b+c+d
12. Show that the square is a rectangle of maximum area for a given perimeter and a rectangle
of minimum perimeter for a given area.
13. If s is the semi-perimeter of a triangle with in radius r, prove that
2217
14. If g, band c are the sides of a triangle A B C with arca A, prove that
ab+bc+casaia
with equality iff A ABC is equilateral.
15. If a, b, c are the sides of a triancle, prove that

4
(abey 2 (ﬁ-] where A is the area of the triangle.

16. Ifa, b, c are positive real numbers, such that (1 +a) (1 + b) (1 4+ ¢) =8, prove thatabc < 1.
17. i a, b, ¢ are positive real numbers, prove that
(@b + bc + Pa) (@c + Pa+ b)) 29a° b .
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18. Prove for any two positive numbers 4 » b and a posigi
ve

s [a“.b]au integer n
< | ——

n+1
19, If s, is the sum

1.1
Sp= 1+ =4 l
3 3+..A+n(,,>2)' prove that

1
=R<S,<n-(n-yy -1

"y LY \»~1
‘1“‘7("]<[ n—l]
i nfl)"
21. Prove thatn! < (—2 s

n(n + 1)tn
20. Show that

2. Provethat 135 .. 2n~1)<n, .
2. Ifa. b, c are positive, prove that a%b + bc + 2a > 3 ape,
24. Ifa, band c are positive real numbers such thata + b + ¢ = 1, prove that
b(-b) c(l-¢) a(l-
& T mb *%2

25. If a, b and c are positive real numbers, not all equal, prove that

6abc < a*(b +¢) + b? (c+a)+ca+b)<2a®+b + ).
2. Ifay, @, ..., 4, arc positive real numbers, prove that

5 s

<)

6.

(aj+a; +... +a,).

11.4 CAUCHY-SCHWARZ INEQUALITY

Another inequality which is useful in applications is the Cauchy-Sch :
We express this as a theorem. E
Theorem L. Let a, a,. ... a, and by, by, ... b, be two sets of real numbers.

= [l s

and equality holds in (1) iff

2
h!

Proof. Let us put

A=Z

Then (1) is equivalent to
C* <AB. &
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and (3) is true. Therefore

lfﬂxo.lhb.lofuitl.l._..‘n.mc N

sufficient nmhmlt&mmmmﬂﬂ>0.%mwhnve

0 f‘,(na. -a)’ =i(n’¢,' ~2BCab, +Cb))
i=l i=l

=B i." _zpcz.:a‘q +C ibf

=l i=1 =1
=B(AB-CY).
Since B> 0, we get AB- C? 20 ) )
whichislhemﬂxedhﬂmﬁty@)-llm.equmyholdslﬂ'
i(na.—a,,)’m

fori=1,2,..,n Q

REMARK. The Cauchy-Schwarz inequality is also true for pl bers with a
little modification. If @y, @y, ..., @, and by, b, ..., b, are two sets of complex numbers,

then
[Z»s[Zt F(Ser] .

with equality in (4) iff @, = A b, for some constant A, i = 1,2, ... n. The proof of this
inequality is left to the problems at the end of the chapter.

EXAMPLE 1. If a;, a3, ..., a, are real numbers such thata; + a; + ... + a, = I,
prove that

2 1
ajy +a§ +4..+a: 2—.
n
SOLUTION, Wehave 1=(a)+a,+...+a,) =(a,.1 +a1 +... +a,.1)?
S(af +a +..4al)(1+..+1)
=n(a} +a} +..+a})
at+al+..+al2l.
g’
EXAMPLE 2, Let P be a point inside a triangle ABC, let ), r», ry denote the distances
from P 10 the sides BC, CA and AB respectively. If R is the circumradius of AABC,
show that
1 2 2 2\2
n+n +n < @ +b° +¢°) (5
\/T N 727{(

where BC = a, CA = b and AB = c. Show also that the equality holds in (5) iff ABC is
an equilateral triangle; and P is the incentre of AABC.

431
ON. We have
1 1
+Jn +yn = Jar, —+ /b 1
Fr o = e e
ing Cauchy-Schwarz inequality for the sets
1..E 14
Vb, Jer )lnd{ V—
(arfbryfers 7;7;7;}%3«
J}:hfrz_*\/; S(arlobrﬁcry"z(l,l‘,lw ©)
a b ¢
Equality holds in (6) iff
Va Jar; = \Jor, = e Jer,
E E
B c
Fig. 11.3
which happens iff
a’ry =b*ry=cry. [0
But ary =2APBC; bry = 2APCA; and cry = 2APAB.
Hence,
ary + bry + cry = 2(APBC) + APCA + APAB) = 2AABC. 8)
Now we use the identity (See Chapter 6. Properties of triangles Theorem 3. Corollary 2.)
AdBC= 2%, )
4R
‘This reduces (8) to
Briiars 0be 10
ary + r:+u_‘-ﬁ4 (10)

Heace (6) takes the form

ool (obetf

a [
1 n
= —==(ab+bc+ca) " .
V2R
But the Cauchy-Schwarz inequality gives again
(@b + be + ca) < (@ + b + A2 (B2 + 2 +a¥)'\2
=at+b+
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a

Thus JE¢J;;+J;S7;—E(a’ +b2+cMH?
with equality being true iff

a’r,:b‘r,:c’r,md%

This reduces to a=b=candn=n=rs

Hence the equality.in (5) holds iff ABC is an equilateral triangle and P is the incentre
EXAMPLE 3. If a, b, c and d are positive real numbers such that g
S+l =@+,

a b i g

-c—+721.wilhequal:rynﬂ'ad=bc.

SOLUTION. Using Cauchy-Schwarz inequality, we get

(n’+b’)’=[J¥~/E+ E;—Jb?]

; i lelog
wnhtheethlybunsmﬂb g

_b_c¢
c a’

prove that

3 43
s["—+b—}(u+bd)
c d

where equality holds iff ~ @?d? = b*c2.

3 bJ
Thus i (ac + bd) < (a* + b?)?
(4
=(@*+ )2 (@ + BPP2
=(@+ b2 (3 + )7
2ac+bd
again by another application of Cauchy-Schwarz inequalilty. Equality holds in the last
e @_b
step iff g
a b
Combining both, we get — = 72 1
c

and equality holds iff ad = bc.

1. Prove that,ifn>2.

k=1

433
2 1fa>0,b>0anda+b =1, prove thay

2 2
(’”l) +[b41 2B
a b 2 )

3 |f,.>o,b>0uu!a+b= 1, prove that

1y 1
(i
a b w
4 lfa>0.b>0.c>0mda+b+c=s'm"nm
@+ 42,

5 If a, b, ¢ are positive, prove that a cos? § + bsin? °<cimpliul|m
Va cos? 0+ Vb sin? g <c.
6. 1f a, b, c are positive, prove that
l+l+lz ! gk 1
+ 5
g a b < Vo T T
1f a, b, ¢ are positive, prove that
a+b+cz \/a—b"*Jb_cQ,J;:,

If a and b arc positive, and a + b = 1, prove that

JTavi+ i s

Prove the following inequalities:
9, (a+b+c+dP <@ +b + 3+ b,
10. (@ + B2 S (@ +5) (@ +bY).
1. ab+bc+casa® +b* + 32
(lal+1bi+1c?<3(@+ b+ ).
For any positive numbers a, b and ¢, prove that
(@b + b'c + a) (@%c + ba + ¢b) 2 9a*b*c.

PROB

. Complete the formal proof of the A.M. — GM. inequality. For this you have to prove two

results: (i) If the inequality is true for 2* numbers then it is also true for 2¢* | pumbers;

and (if) If the inequality is true for every 2 numbers, then it is also true for n where

<<t

(i) Leta, b, | <i<nbe nonnegative real numbers. Show that the discriminant of the
quadratic polynomial

plx) = Z("'”h":
=

is non-positive and use this to prove Cauchy-Schwarz inequality.
(i) Let @ and b be two nonnegative real numbers. Use the fact that the wlyminl
P(x) = (x = a) (x - b) has only real zeros to establish the A.M. - GM. inequality.
Let ABC be an equilateral triangle, K, L and M be arbitrary points on the sides BC.CA
and AB respectively. Show that the area of at least one of the triangles AML, BKM and
CLM is smaller than one-fourth of the area of the triangle ABC.

bad

EF

~

b
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4. For any triangle with angles @, p and ¥, prove dhar-lapaniy Lo
has at least one nonreal zero if

@ =2b<n ()i

!
cosacos peosys o
14, Leta. B. and Y be angles of a riangle. Prove that

Show that the equality holds iffthe triangle is equilateral.

s ), 83, -+ Oy . " . m2%+ngmz%2].
. n
‘*Z“}ﬁ;i‘ﬁ[Z“ﬁ} 15, Find all real numbers %, y and z such that
k=l k=1
for some constant A. Prove that (0 =xP+ (=P + (-4 2= L
some 3 Y
A<7ap,.l¢j_~ % LN 1% If x and y are positive real numbers, and m and n are positive i
i Positive integers,
6. Leta,>0fori=1,2,...n. For any integer k 2 1, prove that prove that ) 8
af +af +..+af a,'"+a;"+...+a:"‘ T Yy
n a+ay+..+a, W [;;—) z(;) (;] .
7. Let P be a point inside a triangle ABC. Let D, E and F be the feet of the perpendiculars o
from P to BC, CA and AB respectively. Find all P for which the sum 17. Rgnd the largest y such that
1 y—x;
BC CA  AB . >3
?3‘??4'?_1-‘““& P 2 s forall x> 0.
8. For any triangle with angles a,  and v, prove that 18. Find the maximum and minimum values of
3 1 v 5
os;inad—sinBuinys—ﬂ. £+ v+l z+1 )
-2 . orxtl yzeyel mdatl

19. Is there a set of real numbers u, v, w, x, y and z such that

Show also that equality holds iff the triangle is equilateral.
Wi+ w 4303+ £ ) =6, ux + v+ wz=27

A real valued function fin an interval [a, b] is said to be convex in [a, b] if for any x and

9.
yin [a, b] and A in [0, 1], f satisfies 20. If x; x» ... x, = @" for some constant 2 and x, > i
. 15y 2. Xy = for . (> 0fori=1,2,...n, i
Sx + (1= 2)y) < Mx) + (1= AS). vall:c of PRt st
Suppose fis convex in (@, b]. Let x;, %3, ..., X, be any n numbers in [a, b] and ;. .... &, be (6 +0) (52 + K)...(x, + k)

m samberyin (0, 1] soch Ay oo hy=; where k is a positive real number.

Prove that F
e 21. For any two positive integers n and k with k < n

& Prove that
/[ Ay x,]Slef(x,y
48t 4% 2<[1+1J <3 foralln.
10. If a is a positive real numbers such that a # 1 and if p and g are positive rationals such n
that p > g, prove that

P q
11. Ifn>0is an integer and a > 1 is a real number, prove that
"MI_;%>E§(".'“L~]'
12. Suppose all the zeros of the polynomial p(x) in R (x),
PRX)=8x"~ G, X 4 a, X" 24+ ay -ntbx+ b
are real and positive. Prove that all the zeros are equal (Hint. Find relations between the
zeros and the coefficients of the polynomial).

Chapter 12 Elementary Combinatorics Page 436
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The error is this. In subtracting the "
back his feasdibeic e umber of hits, we have oversubtrated, When A
situations when A and B both get back ll:eir umbrel] ks d
similarly when B gets back his umbrella ang . These
there are situations when B and A both fhe ;

ly. there are
wu{f are included in (%),

wwice in the entry — 120 that appears in (|

their umbrellas, it will be cotinted lwicc’i)r; 3:::: evel n

this excess subtraction we have to add to the coun?i’r':—(i), x: 1_(3; In order to allow for
number of times two

athematics which deal

jinatorics i of Mi

gls;":::iﬁed ob';:cm:;nms or designs. Already we have seen in C_hnplcr 9. the
concepts, Viz., per ions and ¢ which constitute the warp
and woof of any counting problem. [n this chapter we shall study two basic principles
which have been used by man many times in his scientific thmlur)g and have now been
streamlined. and written down as part of the foundational principles in the subject of

* combinatorics. These are:
(i) (IEP): The Inclusion and Exch
Principle. We shall take these on¢ by one.

12.1 THE INCLUSION AND EXCLUSION PRINCIPLE (IEP)

which will dramatically illustrate the principle.
D. E atiend a party after leaving their umbrellas
the umbrellas get mixed up and are returned to
his own umbrella In how many

s with counting and enumeration

usion Principle; and (ii) (PHP): The Pigeon Hole

We start with an interesting problem
On arainy day. five gentlemen A, B.C.
in a checkroom. After the party is over.
d»egcmkmeninmdnmntrﬂmmnemivn

ways can this happen?
Denote this number by Ds. The total number of distributions of the five umbrellas
10 the five gentlemen is 5! = 120. To get D we may have subtract. from 120, the
nds of 1ty owner. This latter

number of distributions which allow an umbrella in the has
situation may be called a “hit'. Precisely. 2 “hit" is a distribution of umbrellas b;
mumwmgahckwirmudhs,muswc have
Dy = 120 - (number of huts)
there? To answer this let us start counting the number of
in which a genth say A, gets back his umbrella This counting 1
done by first assuming A’s umbrella to be in A’s hands and distnbuting the rcmau_ulls
four randomly. This latter can be done n 4! =24 ways. Thus the number 0f distributions
which give A his umbre{la is 24. Call this (*). Similarly. the number of distributions
which give B his umbrella is 24. Call this (**) And so on, for C. ) and E. So !¢
number of ways in which A or B or Cor D or E gets back his umbrella1s 5x24=120.
Is this the number of hits? If it were 50, Dg would become
120-120=0
But this answer for Dj is obviously wrong, because we know
distributing the umbrellas all wrongly. So there must be some
argument. What is the crror?

y which

How many hits are

.

there are ways f
error in the abo¥e
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lemen get back their own umbrellas (; i
;nm is ellas (irrespective of what the others get). This
5
\(ZJX 3!=60. So the count (i) should be corrected as

120~ 120 + 60
Pursuing the same logic we see that wy
s e hav
For. those hits in which three gentlemen gela;::

) (éi).
l‘gmn‘over-cm-recled the count of hits.
their own umbrellas, have been

subtracted thrice = (i) in - 120 and

added thrice = (.?) in+60

Inother words. these hits have been counted -3+ 3 =
has to be done by subtracting them once. Thcir'numb_c
gentlemen get back their own umbrellas, is

O times in (if). So the correction
T. i.e.. the number of times three

Hence the updated count would be
120-120+60-20

Agau! there has been an over-correction.
back their own umbrellas have been counted

) ().
Those hits in which four gentleman get

43
| || =+ times in the entry - 120,

| 5 | =6 timex in the entry 60,
ud {4)
| 3| = times in the entry - 20.
This
means the counting of such hits has been done
i 4+6-4=-2 times,
i'elwmr Clon necessary to (i) is to add once the number of distributions which
gentlemen thewr own umbrellas. This number is *

[:) 1=5
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So (iif) has to be updated as

120-1204+60-20+5 (iv).
Lastly, it is clear that the one single way in which all five get back their own umbrellag
has been counted, in (iv).

(i) =5 times in the entry - 120,

(;) = 10 times in the entry 60,

(g) =10 times in the entry - 20 .

(i) =5 times in the entry 5

The correction to (iv) therefore is to subtract this number once. This gives us the final
count and also the answer to Ds as follows.
Ds=120-120+60-20+5-1=44.
This jally is the principle of inclusion and exclusion. The name comes froma
set theoretic visualisation, in the form of Venn diagrams. Look at the following situation:
In a village there are 1000 families, of which 480 have male children, 540 have
female children and 275 have both male and female children. What is the number of
families which have neither male nor female children?
Let the portion covered by the rectangle in Fig. 12.1 stand for the set of all 1000
families. Let A and B stand for the set of all families with male children and female
children, respectively. So we have
1A1=480,1B1=540and 1A N B|=275.
Denote the complement of A in the set of all families by A’ and similarly let B stand
for the complement of B. Then what we require to calculate is | A’ n B’ . This set
A’ A B’ is clearly what lies outside both the sets A and B and is shown by the shaded
portion in the figure. It is equal to

A B

Fig. 12.1

1000 -(1Al+1BI-1ANBI)
= 1000 - (480 + 545) + 275
=250.
Thus 250 families have neither male nor female childern.
‘We can write the above as a formula without reference to the problem of the familie_s
and their children. If N is the population of the universe and A and B are two sets — it

440 | Gutene w0 Thws or Pre-Cousae Mamescs |

The result follows immediately.

Since the formula derived in Example 2 is itself used as the /EP by many authors,
we state it below formally. Here we denote by n(0) the number of elements which
satisfy none of the properties Py, Pa. ..., Pr. Thus

n(0) = n(1) - a(2) + n(3) ... + (= 1) nl0). @)
EXAMPLE 3. Find the number of positive integers not greater than 100, which are
not divisible by 2, 3 or 5.
SOLUTION. Let P; stand for the property of being divisible by 2. Let P stand for the
property of being divisible by 3. Let Py stand for the property of being divisible by 5.
Let [n/r] denote the largest integer in nlr.
Then

n(0) = 100 - ((100/2] + [100/2] + (100/5]) + ([100/6]

+[100/15] + [100/10]) - ([100/3])
=26.

EXAMPLE 4. Find the number of ways of dealing a five-card hand from a regular 52
card deck such that the hand contains at least one card in each suit.

52
SOLUTION. Number of all 5 — card hands is [ 5 )

Let P, be the property of the hand not having any spade:
Let P, be the property of the hand not having any club;
Let P; be the property of the hand not having any diamond;
Let P, be the property of the hand not having any heart.
We want to calculate n(0).
n(l) is calculated by removing one suit from the deck and dealing the rest. Hence

W=4 (39
n(l)=4x 5)

4 26 26
imilarly, 2)= =
Similarly, n(2) (2))([5} 6x(5)
n(3)= 4)x(13 =4x(35
=3 S (35)
d 4) = 4 0=0
an n(4) = 4 x0=
52 39 26 13
H 0)= - = |
ence n(0) (5] 4(5)+6(5] 4(5)

‘We leave the simplification of the R.H.S. to the reader.
Note. The above solution is ingenious in the choice of the properties P,
Instead of denoting the affirmative qualities like *having a particular suit’ as property £, we let
P; stand for the property of not having a particular suit. This enabled us to calculate the number
of deals which resulted in cach hand having all the suits and this number was n(0). Thus itis
i to make the choice of the that will ly enable us to use
the JEP directly.
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i::'m matter whether they mlcrsec(oruedisjointnrmiumbaet of the other —
. deA'r\B’.|=N—(IAI+IBI)+IAr\BI.
lbo[i:,:s the set product notation AB for the intersection A N B we can rewrite the
|A'B'|=N-ZIA1+14B),
One can similarly proceed to the case of three sets 4, B, C, We have
|A'B’C'|=N—ZIAI#EIABI—IABCI.

(The student reader is advised to verify this b i .
generalization of the above to  sets Y drawing the Venn diagram). The

A Ay A,
is the statement of the SIEVE FORMULA, which is only another name for the JEP.
SIEVE FORMULA (IEP) If A, A,..... i i :
& 1:A2,.... A, are n subsets of a universe with population
IAIAY - A= N=ZIA 1+ Z1AA)1- 144,
+o. (-1
We shall sce several applications of this formula now. i %R
EXAMPLE 1. Apply the formula to the problem of th ir i
et iy of the 5 gentlemen not getting their
SOLUTION. Denote by A; the set of distributions i i i i
umbrella. Then, N = 120 ar’\d S
eachlA;|=24;
eachlAA;l=6;
each | AAA N =2;
cach | A;A A A 1= 1;
and 1A} A3 Az AL A= 1.
Hence the number of ways in which none gets his umbrella is equal to

TN 5 5 B 5
| AyAYAYASAS | = 120 - 4 = =
! TASAS (IJXZ +(2]6 (3]x2+(4)xl 1

=120-120+60-20+5-1
=44,
EXAMPLE 2. Let N be the population of a universe. Let the elements in the universe
beassociated with certain properties ( = qualities, conditions) called Py, Py,...P, Then
the number of elements which have none of the t properties is given by
a(1) =n(2) + n(3) —..., +(=1)n@)
where n(i) = is the number of elements with property i, i = 1, 2, ... t.
S()LU‘!'I()N. This is nothing but the Sieve Formula restated. Transfer the situation to
:‘;le(:lg of a Venn diagram. LetA;, i = 1, 2, ....  be the set of elements with property
() =141+ 1A+ .. 1A 1=Z1A
n(2) = Z1A;A;1;n(3) =Z1AA;A | and so on.
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mMPLE 5. How many integers from |
squares nor perfect cubes nor perfect faun;.nmmz(:g"' inclusive) are neither perfect
SOLUTION. Let property P, be that of being a perfect
of being a perfect cube: and Py be the Property of being a

2 :g = () ~n(2) + n(3))

=10°-(10+ 1024 31y 4.

5l (10+3+31)-3

This is because the perfect squares less than or

2223 g2 (w‘)z.‘q“’l 10 10° = (1032 are:
So the number of perfect squares is 10°
The perfect fourth powers are - S0 also the number of perfect cubes is 102,

14,24 3% L [(10941 = (10924 = 344

Square; Let P, be the
perfect fourth power. Then n(0)

(See Definition 6 of Chapter

ie. 19,2434 38, 2 for the meaning of [x]).

So the number of such perfect fourth powers < 106
we look for integers which are perfect squares as
64 = 2°. The numbers are in fact,
19,2938, ... 108
which means there are only 10 such.
If we look for perfect cubes which are also perfect fourth powers these
N 2 2 e
112,212,312 only, since 412> 106,
Finally. the numbers which are perfect squares whi
Finally ich are al.
are just only the fourth powers and these are 31 in number n’v(;epehr:\zlalmdm ps::nm
And lastly. the number of members which are at the same time perfect . hres
perfect cubes and pertect fourth powers is just 3 since they are & e
1'%, 212 and 312 only.
Thus the required answer is
=10,00.000 - 1131 +44 -3 =998910.
EXAMPLE 6. Define a derangement of 1, 2., 3, ..., n as a permutation &) @ .. &, of
< n$uch that @ # i. To illustrate, 4123 is a derangement of 1, 2, 3, 4 whereas,
4231 is not compute D, the number of derangements of 1. 2, 3, .... n. :
SOLUTION. Let for each i, P, be the property th: i
J P y that the permutation «, ... &, has &, =
Then in the Sieve Formula, . S
n(r) = number of permutations which have r digits in their natural position

n '
:( ](n-r)‘:L
r r!

So Dy=nM=n'-n1'+a2!'-n'B! . +1Vn'n!
=al(l=V1'+12=134+ L +(=1)"Un)).

EXAMPLE 7. Find the number of permutations of the set (1. 2. ... k) in which the

Ppatterns 12, 23, ... (k - Dk do not appear.

SOLUTION. Let P, be the property that the pattern (12) appears. Let P; be the property

that the pattern (23) appears ... Let Py, be the property that (k — 1, ) appears. Then

what we want is n(0). Let us calculate n(1), n(2) etc. systematically, one by one.

is 31. Again to calculate n(2), first
well as perfect cubes; g . 8=4=
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Calculation of n(l): To find the number of permutations in which (12) appears, keep
(12) together as one entity. The remaining (k — 2) objects together with the single
object (12) make up (k — 1) distinct objects. These can be permuted in (k - 1)! ways,
The same argument applies for the cases of the number of permutations in which (23)
appears, (34) appears and so on.

k-1 -
So n(l):[ 1 )x(k—l)!wherelhefacmr[kl I]
is because there are k — 1 patterns and we have to choose one of them.
F:alculllion of n(2): We first choose 2 patterns. This can be done in (k ; I] ways, If

the 2 patterns chosen are overlapping like 12 and 23, then we have one single entity
123 which along with the remaining k — 3 objects make k — 2 objects in all and these
can be permuted in (k — 2)! ways. If, on the other hand, the 2 patterns chosen are
‘disjoint’ like 12 and 34 then we have two distinct objects 12, 34. These two together
with the remaining k — 4 objects make up k ~ 2 objects in all, again giving rise to the
same (k - 2)! permutations. Thus whether the patterns chosen are overlapping, or not,
the refulling number-of permutations is the same (k — 2)! Hence

k=1
nH= k—2)!
n(1) [2]( )

We shall observe that in the case of choosing 3 patterns also a similar situation
happens. The three patterns chosen may belong to one of the following three ‘types’ as
far as ‘ovs * of patterns is d

12, 23, 34 : (Typel)

12, 23, 45 : (Type2)
and 2, 34, 56 : (Type3).
In the case of type 1, there is one object of the form 1234 and there are (k —4) remaining
objects. These together can be permuted in (k — 3)! ways. In the case of type 2, there
are two objects of the form 123 and 45 and there are (k — 5) remaining objects. These
together can be permuted in (k — 3)! ways. Again in the case of type 3. there are three
objects of the form 12, 34, 56 and there are k — 6 other objects. These together can be
permuted in (k - 3)! ways.

Thus

k=1
n(3)=[ 3 ](k—])!

And so on. The final answer can be seen to be

P L PPV L PRI il PPN
] 1 ! 2 ! 3 ( )!

..,u-w—‘[t::]n

EXAMPLE 8. If A, A, ... A, are n subsets of a universe with population N,
1A/ UA;U .. UA, = ZIA;I-ZIAA; 1+ E1A4/A, |
et P A A
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XAMPLE is a posifive i i than n and pri
ve integer, the number of integers less 1 prime
e s Calculate the value of &(n) using the IEP.

10 it is called the Euler function &(n). Cai
SOLUTION. Let the prime decomposition of nbe
‘ n=p py b .
isti i i itive i . Foreachi=|
here the p's are distinct primes and the o’s are all positive integers. For
:dcﬁne prl;pmy P, as the property of having p; as a common factor with n.

Then
&n) =n—n(l) +n(2) =n(3) + ...

L LA LA
= Z » +§' np, 2 PP
<)

)

To illustrate, we have,
Since 100 =22- 5%,

e

. 6} such that the patterns 13 and 246 do

. Find the number of permutations of {1

not appear.

2. Seven people enter a lift. The lift stops at three (unspecified) floors. At each of the three
floors, no one enters the lift, but at least one person leaves the lift. After the three floor
stops, the lift is empty. In how many ways can this happen?

3. In how many ways can we permute the digits 2, 3,4, 5. 2. 3, 4, 5 if the same digit must
not appear in a row?

4. Find the integer n which has the following property: If the numbers from 1 to n are all
written down in decimal notation the total number of digits written down is 1998. What
is the next higher number (instead of 1998) for which this problem has an answer?

5. The following summary appears in a report on a survey covering 1000 couples and their

families. Scrutinise the data and find a mathematical reason 1o conclude that the data

contain some efror.

Number of couples with one or more children 925
Number of couples, both of whom are employed for a living : 841
Number of couples, with one or more parents living with them 510
Number of couples with one or more children and where both

are employed for a living 1625
Number of couples where both of whom are employed for a living

and with one or more parents living with them 1332
Number of couples with one or more children and with one or

more parents living with them : 305

SOLUTION. This follows from the Sieve F
"As? . ‘Ormula, s
VAVAY . A/ 1= N4, N since
EXAMPLE 9. How many in!egersalulio,u VA,
0sx<10?
SOLUTION. Let P, stand for the proy
o perty of o
of “x; 2 10" and 50 0n. Then we have fouy preot 0. Lot P2 stand for the
number of integer sol_uuons of the equation, w'!’m“’l’““m P, Py, Py, P, We want the
number of non-negative integer solutions, wimou’:o:yonis“:i:zw Properties, The total
on on ’s i
3044 the x;'s is,
=%

Example 5, Secti
from Examp] ection 9.2. Thus N, the total number of all solutions is (33J We

are there of x, 4 X2+ X3+ x4 = 30 with

know n(0) =N = n(1) + n(2) - n(3) 4 ..
equation becomes
M+ X+ 23+ x4=20,

There is no restriction on the unknowns
y 5 now, i il
solutions is, by the same Example, quoted nbove‘rhe e T

)

. 3
ie. . This is th i igil
i ( 3 ] is 1s the number of solutions of the original equation with x; 2 10. The

.Togem(l)wcﬁrslwritex.: 10 + y,. The

same is true for the number of solutions with X210 0rx32 10 or x, > 10. Thus

nm=4(3).
3

To get n(2) we write, as a typical case, x, = 10 + = i
. 1 Y1 and x; = 10 + y;. The equation
Vit +x+x=10

for which, the number of non-negative integer solutions is

10+4-1 13
4-1 ) (3
Hence @ =6(").

At Ih.c nextstage where we have to make three of the x;'s greater than or equal to 10,
there exists only one non-negative integer solution of the original equation. Son(3) = 1.
Al_the next stage where we have to make all the x;'s greater than or equal to 10, there
€Xists no non-negative integer solution of the original equation. Hence n(4) is zero. So

We obtain
23 13
o= (3)-o(5)(3)-1

Which is therefore the number of required types of solutions.

ey Commroncs .

6. How many non-negative integer solutions of
¥+ x4+ x5=20
are there with
(M) x<8.i=1,23,4.5
(i) X $5. 5,8, 5,510
7. Find the number of permutations of the 12 letters
A CDGHLKNORST
which do not contain the patterns
KRISHNA, GANDHI, CHRIST, Gop
Five children sitting one behind the other in a five seater merry-go-round, decide to

switch seats so that each child has a ion i
ke flew companion in front. In how many ways can this

How many positive integers smaller than 105
of these consist of the digits 1, 5, 0 alone?
10. Obtain the recurrence relation for D,:
Dy=nDy =~ (D, ~(n-1)D,,)

Hint: Partition the derangements into two types accordis

s A to whether
element | is occupying the kth position, while k is in the l":f:( position. or ot the frt
Hence derive '

e

include all three digits 1, 5, 0? How many

D,-nD, =(-1y
and use this to obtain the formula for D,
11. Find the number of positive integers less than 29106 and prime to it.

12.2 THE PIGEON-HOLE PRINCIPLE (PHP)

If more than n objects are distrib into n some must
receive more than one object. This idea, properly formalised, is the Pigeon-hole
principle. We shall start with a simple example the working of which will illustrate the
implications of this principle.
EXAMPLE 1. In any set of ten two-digit numbers show that there always exist two
non-empty disjoint subsets A and B such that the sum of the numbers in A is equal to
the sum of the numbers in B,
Iustration. Suppose at random we write down ten 2-digit numbers as follows: 37,
18,87,60, 11,3490, 17, 25, 91. A little trial and error will tell us that there exist two
non-empty disjoint subsets of the above set, namely {60, 17} and (34, 25, 18) which
have the same sum of its elements. The sum here is 77. What is important here is that
there always exists one such pair of sets, whatever may be the set one starts with. The
student should experiment with further random selections of ten two-digit numbers.
The problem is to prove that this situation will always happen. With a set of ten
elements, how many subsets are possible? The answer is 2! if we include the empty
set also. But since in this problem we are interested in non-empty subsets only, we
shall omit the empty set and look at the remaining 2' — 1 = 1023 subsets of numbers.
Each subset has a sum of its members. What are the different possibilities for these
sums? The least possible sum is 10, because we could take {10} as a singleton subset
of our set, provided of course we had 10 as a member in our set. Any way 10 is the
least possible sum. What is the largest possible sum? This will be the sum of the
(possible, if at all) subset:




46 GiBioe e T o Pre Coiese Mineuuncs | .

(99, 98,97.96.95. 94,93,92,91)-
q i o-digit number 99, becau:
umbers counting from the e se,
if v;‘ek :kk: ::lnl énm::n‘:m there wo\ll: be nothing left for the other non-empty subset.
The sum of the above nine numbers is 855.
It s then clear that, whatever non-empty subsets we take from our set of numbers,

i i 5 only. In an actual case
f the mbusmlhcmbseumllvuyfmml()lc%' 0 :
dﬂ: ?I::?:im o:::ld be even a smaller spread than this, but this is the utmost possible
spread. In other words there are a possible variety of (855 -9) = 846 values for the

sums of subsets. )

Now the pigeon-hole principle applies. On the one hand we have 1023 possible
subsets and on the other hand there are only 846 possible sum-values. Since each
subset must have a sum-value, it follows there certainly exist more than one subset

having the same sum-value! If these two subsets are disjoint, we are doqc. If Lh?y are
not, i.e., they overlap, by throwing away the common elements, we can arrive at }ilSjoinx
subsets which have the same sum. An illustration of this by an example (Exercise 12.2

No. 10) is left as an exercise for the student.

One would wonder at the power of the PHP used in the above example. Without
ical i formula, or ipulati we were able to solve

much
We
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all its three coordinates integers and so i i int i

'::ul - 50 is a lattice point in 3-space. Hence the

Here is another interesting application of the PHP, which i foundati i

int for a whole branch of combinatorics, called “l‘lx}:‘lcShE,st’l;{fBOR;?‘ow -
EXAMPLE 3.Six people meet in a party. Show that either there are at least three who
have mutually shaken hands before or there are at least three, no two of whom have
shaken hands before. Show also that the number ‘six"in the slam;mn cannot be omhc
by the number ‘five’ or less. replaced
SOLUTION' For convenicnlce we shall refer to any two people who have shaken
hands before by the :crm ‘fneads" or “acquaintances” and any two who have never
done so. by the term smgcrs . So three persons who, two by two, are friends would
be called “mutval friends™ and in the same manner, three people who, two by two, are
strangers wuuld_be called "‘mulula] strangers”. So the problem mquire; us mihow lthat
inany party o_f six people cither three of them are mutual strangers or lhree of them are
mutual acquaintances. The proof of this statement requires nothing but a three-st
cold logic. N

In order to help the understanding, it is conveninent to c

 help ¢ . 5 onvert the problem to a

g{agh-lhc(.)rc:u, .~-cmng.. Right here one should experience the thrill of the ascent to

quip

Example 1. The PHP has its applications in several totally p d

shall see a few such examples before we actually come to the mathematics implied by

the PHP.

EXAMPLE 2. A lattice point (x, y, 2) in three-space is one all of whose coordinates

are integers. Nine such points are ‘taken at random. Show that of the 36 line segments

Jjoining pairs of these poinis, a least one passes through a lattice point of the space.

SOLUTION. We are just given two pieces of information, namely, there are 9 points

and 36 line-segments joining them, pair by pair. In fact the “36-line” information is
dant, we could b lculated that when there are 9 points there should

be (a maximum of) (:) =36 line segments joining them. Thus the only real piece of
information is that there are 9 lattice points. But the fact they are lattice points is the
real clue. The coordinates, .x, y, z of a lattice point are all integers. These integers have
only two possibilities in terms of parity (i.e., of being even or odd). Each x;, each y;,
and each z; of the nine points (x; y;, z,) has only to be either odd or even. [n other words
there are only 2* = 8 possibilities for the (x;, y;, z) in terms of the parity of the coordinates.
But there are 9 points in all. These nine points have each to fall into one of these 8
possibilities, Here comes the use of the PHP. So there should exist 2 points out of the
nine, whose coordinates (a, b, ¢) and (d’, b, ¢’) have the same parity, coordinate by
coordinate. More precisely a and a’ are cither both even or both odd; b and b’ are either
both even or both odd; ¢ and ¢’ are either both even or both odd.

Now comes the mathematical consequence. Therefore a + a’, b + b’, ¢ + " are all
even. This means that the mid-point of the line segment (one of the 36 line segments
stated in the problem!) joining (a, b, ¢), (@, &', ¢’), which is nothing but

a+a b+b’ c+c’

2 hig vy

from a concrete situation. Suj i

h : ; . Suppose we had a with 6
vertices and every pair of points was joined by an edge. Such a gmpﬂ::allled a
;gmpl'el.( graph — the completeness indicating that there are no more pairs of points
to be joined by edges. A complete graph on n vertices is denoted by the symbol X,
Figure 12.2 shows K3, K3, Ky, Ks and K. "

1 1 2

Fig. 12.2
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f 6
Isd‘uwmevenicesoﬂ(osw‘d or the 2 | People

i he two
red or green according as U O people
be 0:’::“"’;3“ edgeare mutual strangers or acquaintances,

natever way You may colour_lhe 1§ edges of a Ky red
The problem now asserts: In W ther a red triangle — that is, a triangle all of whoge

and green, you can ever a':;:d alel.:emali" a green triangle. The interesting proof goeg
in g

6
mku&-“"”[z)

three sides are red — Or.
as follows. tion on any one vertex, say P. There are
i Focus your atten 2
Consult Ke in Fig. 122 loured red or green — some red. some greep,
% ; P. They are colou 4
five lines going forth from

red and how many of them are green. It could
We do not know how many of them ar: three red and two green: two red and three
e allfive red: four red 4l o“e:],ﬁre‘gmn,‘mc beauty here is the relevance of the
green: one red and four green: mmn,; and we have five lines which fall into cither one
EHF Sines bete meon:|y lwouzom Jeast three of the same colour. (The above listing of
:,!’;elh;?f‘ m:lpp'i;?:ﬁ:::enainly confirms this conclusion — 10 arrive at which,
ifferes
however. the listing was not necessary)- - s
ppose A, B, C are the other ends of these three lines. all of the same colour, say,
s“f ithes Ax;ne.orAB BC, CA s red then that line with the two edges from P meeting
T e would give a red riangle. I none of AB, BC. CA is red. then all three are
g .
green and we have a green triangle ABC.! .
This concludes the proof that either there exist three mutual strangers or there exist
three mutual acquaintances. = ohe
Finally, we note that the number *six’ cannot be replaced by “five’. For. if we hada
Ks, and w‘e coloured its 10 edges red and green. it is not always true that there exists
ei:i'tcr ared triangle or green triangle; for. look at the edge-colouring of K< exhibited in
Fig. 12.3 where the letters r and g indicated on the edges stand for red and green
respectively. We note that, for this particular colouring, there is neither a red triangle
nor a green triangle. This single case tells us that the existence of a monochromatic
triangle (triangle whose sides are all of the same colour) is not universally true in the
case of Ks. Certainly it cannot be so in the case of K or K

Fig. 123

Thus 6 is the least possible value of n for which K, has this property. Note that
when Kg has the property, all K,, n > 6 has also the property.

'!'hxs'elnbma!c discussion of Example 3, enables us to assert the following statement.
which is sometimes called the Friendship Theorem.

— 449

Friendship Theorem. In a party of six people there always exists either three

mutual acquaintances or three mutual strangers. The number ‘6’ is the smallest
ve integer for which this result is true.

EXAMPLE 4. There are 1958 comp which can icate among th h
in 6 languages — with the proviso that any two computers communicate only in one of
these 6 languages. Prove that there exist at least 3 computers whose mutual language
of communication, two by two, is the same.
SOLUTION. The graph-th analogy of Example 3 will help as also the edge-
colouring analogy. Imagine a polygon with 1958 vertices. with its edges coloured with
6 colours. Fix a vertex P. 1957 lines go forth from P. They fall into 6 colours. Since 6
x 326 = 1956, the PHP tells us that there exist at least 327 edges of one colour say C).
The other ends of these 327 edges shooting forth from P constitute a complete graph
with 327 vertices. If there exists a single pair of vertices say (a, b) out of these, that
have the same colour as C,. then we have a C, coloured triangle of which one vertex is

P and the other two are a. b. If not, this means, all the edges of the K137 have only the
remaining five colours.

Repeat the process now for this K3,; and the five colours. Since 5 x 65 = 325, it
follows that, out of the 326 lines shooting forth from one fixed vertex, say Q there
exists, by an application of PHP, 66 lines of the same, colour. As before this leads us to
a K with all its edges being coloured by four colours. Again since 4 x 16 = 64, the 65
edges shooting forth from a fixed vertex R of this K¢ fall into four categories of
colours and so. by, PHP. enable us to assert the exi of either a h i

triangle with one vertex R or in the alternative that of a K; whose edges are all coloured
by 3 colours.

One more reduction gives a K5 whose edges are all coloured by 2 colours. And we
know by Example 3. this inly leads to a

ic triangle.

It is now time for us to state the pigeon hole principle formally as a self evident
proposition

PHP Ifkn + | pigeons (k 2 1) are distributed among n pigeon-holes, one of the pigeon-
holes will contain at least k + 1 pigeons. A stronger version of this would be the
following: )

PHP If m pigeons are placed into n pigeon-holes, then at least one pigeon-hole will

[m=17 . =
contain more than | —— | pigeons, where il
L n

] is the largest integer in 77—
n

EXAMPLE 5. Given a sequence of 10 distinct numbers, show that there exists either
an increasing subsequence of length 4 or else a decreasing subsequence of length 4.

SOLUTION. It is convenient to keep a concrete case in front of us. Let us have the
following sequence for this purpose.

24 3 5 4 17 14 21 8 22 10

The increasing subsequences starting with 3 are: 35 1721 22;34 172122, 31721

_22 31421 22:3 8 10 and so on. Therefore, we observe that the length of the longest
increasing subsequence starting from 3 is 5. Thus for cach a;, | <i < 10in the sequence

A1 @y .y we may obtain ¢, the length of the longest increasing sequence starting
with a,.
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In our illustration, l.el:z-s.r;=4mdso°"‘w““"““m"'“’“"'t&
our il )
WMMM;“”J s 417 14 218 22 10
’:';'15443322'1
0

have
this for the general case, W€
If we do this pgrig g b
tt e nding ¢ is 4. In othe;
ists a; such that the cOrresponding f; 18 2. T Words
there ﬁ:’; whi;:ll the length of the longest increasing subsequence
there exists a decreasing subsequence

Now we claim that d
there exists a term starting
isd. nmmwmm.ms‘lﬂl prove

i some term.
s i 'fmmmun to say that there exists no term, starting from which the
k"Nsmow s “inausing subsequence is 47 It means ;= 3 or less for all i, Noy,
there s 4y ... a. These are the 10 pigeons. The pigeon holes are the
three :mx::smn:ﬁly‘ 1 z7..3 So by the PHP there is at least one r-value

-V » 2 3

10- l] = 3 pigeons. Thus there exi
(= pigeon hole) which contains more than |~ | = pigeons. existsa

ich is common 4 terms of the sequence. Suppose this r-value s,
:;‘,l;eﬂtca:gl\summ is m(eos:ln::afs;r any other 7-value). And further suppose that the
terms of the sequence having this (-value are

ayazasas
Each has a value 2. We therefore have the situation as follows:
a a a3 G4 As G a7 g ay ayg
r-value : 2 2 2 2
Our claim is : ay> a3 >as > as.
To see this, first note that if a; < a; then since a; is the starting point of an increasing
f length 2, by appending a; to the beginni of this subseq we will
‘have an increasing subsequence of length 3, starting from 2. This is a contradiction to
1,=2.Thus a > as.
Again a; > as for a similar reason and as > ag for the same reason. We now have
ay>ay>as > ag.
which is a decreasing subsequence of length 4.
This result is known in a general form and was proved by Erdos and Szekeres inthe
following form. We shall not prove it here.
Erdos-Szekeres Theorem: Given a sequence of n* + 1 distinct integers cither

there is an increasing subsequence of 7 + 1 terms or a decreasing subsequence of
n + 1 terms.

EXAMPLE 5.is a special case of this.
EXAMPLE 6.4 set of numbers is called a sum-free set if no two of them add up 10@
member of the same set and if no member of the set is double another member. How
N big could be a sum free subset of (1, 2,3, ..., 2n + 1).7
SOLUTION. First note that the set
fn+ln+2,n+3, .. 2n+1)

[ Blaman Covmroncs

i’“um.r;eesubseundiusiuisnﬂ.\veshum
cwldubigger.
Suppose a subset is of size n + 2. Let the
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prove that no sum-free subset

largest number in the subset S be /. Thus §

= (@, b. - 1} where Lis the largest. Centainly 1< 2n + 1 since S is a subset of
(L2.3,.. 2n41).

Now consider the set of numbers
2035 1)

is odd, the /— 1 numbers 1,2, 3, .... I-1 pair off into +—) ri
1flis pair off into 5 pairs
L1=1.2,1-2)... *)
sucht.hanhesumofeachpairofnumhcrsisl.lfliseven.lhcl—Inumbcnl‘2,3.

y. g A=l
.11 pair off into 5 pairs

(1.1-1).(2./-2)....(1_ L ) =
Y I.2+l {0

1 < =
and a singleton 3 such that the sum of each pair is /. -

1 1
Since 2 <n+ 2 <n+ 1'we can pply the PHP to the pigeons which are the n % 1
members of the set other than / and the smaller number of pigeonholes which are the
pairs listed in (*) and (**). The PHP will then imply that two members of the set S
other than / would fall into one of these pairs. In other words there exist two members
in § whose sum is /. So is not sum-free!.

Thus any subset of size > n + 1 cannot be sum-free. So the maximum size of a sum-
free subsetof {1,2,3, ....2n+ 1)isn+ 1.
EXAMPLE 7. Given a set of n + I positive integers, none of which exceeds 2n, show
that at least one member of the set must divide another member of the set.
SOLUTION. Let the given set be (xy. X, ..., X1}
and let x=2y,
where 7, is a non-negative integer and y, is odd. What we have done is to break each x;
into its even component 77 and its odd component y, As an illustration, 48 = 24 x 3;
35=2°%35:8=2"x 1, etc. Let

T={y;i=12,.,n+1)

ie. Tisthe setof all y,'s. T therefore is a collection of n + 1 odd integers, each less than
2n. But there are only n odd numbers less than 2. So by the PHP, this means two
numbers ( = pigeons) in 7 must be equal — say, y; = y; with i < j.

Then

x=nyandx=2"y;
Here, if n, < n; then x; divides x;, and if n, > n;, then x; divides x;. Thus in all cases there
are two numbers in the given set such that one divides the other!
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. 100 distinct positive integers none of which hqy
EXAMPLES8. We are givena ; ; < %ﬁg that M contains at least one subset of fo,

a prime factor greater than i the fourth power of an integer.

inct elements whose prod ;
ds‘g,;'ml]m““-MmovnySprimeslcssmm 12. They are: 2,3, 5,7, 11. So each

m e M has a prime factorisation of the form
QusbstrhlY W

where 2%, 3% 5% 70,1 11, are non-negative integers. With each m € M associate ap
vector with § coordinates) as follows.

ordered 5-tuple (= ; -
1f m has the factorisation (1) the vector corresponding to itis
XTSRS
where x,= 0if k;is even;
and x= 1if k;is odd.

Just to illustrate, the vector corresponding to 48 = 24 31i5 01000 and the vector
corresponding to 2310 =2 % Ix5xTx1lis 11111.The number of all su.ch possible
vectors is 25 = 32. Since 100> 32, by (PHP) there exist two numbers ( = pigeons) say
a, and by in M which have the same associated vector ( = pigeon hole). This means a,
and b, have, for each i, their k/'s both even or both odd. Hence the product a, b|‘has all
its k's even numbers. In other words ayby is a perfect square and so may be written as
cf for some integer ¢;.

Now remove this pair of numbers ;. by from M. We then have 98 clements and
since 98 > 32 = 25, again by another application of PHP.‘lhcre exists two numbers a,,
b, such that, as in the previous case, asb, = ¢ for some integer ¢,

Remove ay and b, from M. Proceed like this until we have removed 33 pairs of
elements from M. At every stage we have a set which has more than 32 elements and
so the above arguments are valid. Finally we have 100 - 66 = 34 elements.

Now look at the removed set of 66 elements (i.e., 33 pairs : @y by. ..., dxw, bs3. Each
product a; x b, = ¢} for some integer ¢;. Therefore

= ab,

We thus have 33 positive integers and each of these integers ¢, has no other prime
factor other than 2, 3, 5, 7, 11. Since 33 > 32 = 25 again by an application of PHP,
there exist at least two integers ¢;, ¢; whose exponent vectors are the same. This means
ci¢j=d* Now

& =(cic)?= C,Zt‘f =abapb, for some a, b, a, b;in M and we are done!

We shall conclude this section with an indication of a famous theorem of Ramsey
— which is the blossoming out of the PHP into a full fledged mathematical research
activity in modemn times. Ramsey proved in 1931 the following theorem by a terse
logic that was a supreme extension in a tight-rope fashion of the logic of the Friendship
Theorem. The statement of Ramsey's theorem may be described as follows.

Let be a positive integer. Let r, g,, g, ..., g, be positive integers such that
1<sr<gq;foreveryi.
‘Then there exists, says Ramsey’s theorem, a smallest positive integer n (which
of course depends on the r and the ¢'s) such that the following holds: Let the
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M(Lembm:conhhhgrdm
Ted a5 . )dsummm,mm
ApAz .,
In other words each r-subset of § js
”,,.;=1,2,...,:mereem.s..bmx';'r“""s"z:vneor::ae:mm,,,
of § belong to the same A, elements such that all r-subsets

abstraction. all happening simultaneously,

Take r = 2. This means we are interested o],
of vertices of a graph. we are interested in the
the Friendship Theorem. The use of a ges
abstraction.

Take ¢ = 2. This means that the r-subsets (i.e the
case r=2) are partitioned only into 2 calsses, namel
those which are coloured green. The use of the ges
abstraction

Then Ramsey's theorem says that there exists a small
case of the Friendship Theorem it is 6) which has the followi

e H > lowing property. If the
graph K,, has its edges partitioned into a red class and a gfeen class, merec::psllsﬂ:
triangle (g-subset. i.¢. a 3-subset; the use of ¢; instead of 3 i i i
all of whose sides belong to one colour. ' ek

Thus the Friendship Theorem is the special case of Ramsey's theorem with r = 2
t=2and g,. g, both equal to 3. But there is one difference between the Friendship'
ﬁcomm. and Ramsey’s Theorem. We pay a big price for abstraction. While the
Friendship Theorem asserts that 6 is the magic number with the stated propert,
Ramsey's theorem u_nly says there exists such a number. It does not tell you what it is
or how to calculate it. Calculation of these numbers, called Ramsey numbers, is not
easy. The Ramsey number is denoted by T

) NG g2 gin)
showing its dependence on the+g's and the r's. Thus the Friendship Theorem says
N@3.3:2)=6
The general Ramsey numbers for various r's and all possible ¢'s are therefore only
known to exist. Their actual determination has given rise to several continuing research

problems. Most of the numbers which are known, are for the case ¢ = 2. For t =3, the
only known number is

y in 2-subsets. So if the set § is the set
edges of !he'gmph. This was the case in
neral number r instead of 2 is one level of

edges of the graph, in the speical
ly those which are coloured red and
neral finstead of 2 is another level of

lest positive integer n (in the

N@3,3,3:2)=17.
This means 17 is the smallest positive integer n such that in whatever way K, is edge-
coloured with three colours, there will always exist a monochromatic triangle.

Recall Example 4 where we proved

N@333:2)<17

N(33.33:2)<66

N(33333;2)<327
d N(33.3333;2)<1958.
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cul i
That N (3.3.3:2) is actually 17 and not any number less than 17, needs an example 10. ':dP‘.‘,“;‘;I:'e ‘x"°;§mmm§:mwmm says that if the edges
of a complete 16-gon whose edges are coloured with three colc_vurs in such a way that e w complets 4 gon'al) oF wh:sleu: ariangle all of whose mpleu;gnhm
no monochromatic triangle exists. This needs deep Mathematics. Ag far as the other an approprisie example thaty > 8.x edges are of the Otheroomk.., anveby;:m
numbelsmoomned,pmicuhrlyforhghavaluesof»B.veryhulensknown, 1, Let§= (1,2l l€ Sinsaidiobea ing

fixed poi g
P (k) be the number of permutations of § wh'i::mh"': :er 2 Permutation p or §'if p(i) = i, Let

k fixed points. Prove that

ERCISE

n
1. Ifthy peopleina how that thy ists a subset of more than 3 people who Zk-p,.(k)zn!
will have a common month of birth. k=0
2. Concoct a problem similar to Problem 1 in respect of date of birth.
3. What is the smallest possible number(s) which have the stated property in Problems
1and 2?
4. Tf a factory has 100 electrical outlets with a total of 25000-volt capacity show that there
exists at least one outlet with a capacity of 250 or more volts.
5. Aninternational society has its members from six different countries. The list of members
contains 1994 names numbered 1, 2, ..., 1994. Prove that there is at least one member
whose number is the sum of the numbers of two members from his own country or twice
.nhtxelslhenumbeforon:himb«nomhisuwncom\n. s
6. Complete the proof of the last part of Example 1 by, means of the illustration required in

PROBLEMS

1. How many n-digit decimal sequences are there, using digits 0, 1,2, ... 9, but in which the
digits 2. 4, 6, 8 all appear?

2. How many positive infegers < 462 are relatively prime (0 4627 Relate this problem to a
function defined in Chapter 2.

3. Show that if the 21 edges of a complete 7-gon is coloured red and blue. there exist at
least 3 monochromatic triangles.

4. Achess player plays 132 pames in 77 days. Prove that for a certain number of consecutive
days he has played exactiy an aggregate of 21 games.

5. How many derangements of 1,2, ..., n are there in which only the even integers occupy
new positions?

6. Suppose that 1985 points are given inside a unit cube. Show that we can always choose
32 of them in such a way that every (possibly degenerate) closed polygon with these
points as vertices has perimeter less than 8/3 . Hint: 1985 =31 x 64 + 1.

7. Let x be any real number. Prove that among the numbers

X, 2% .o (= 1)x
there is one that differs from an integer by at most 1/n.
8. a, b, ¢, d. e, f, g, are non-negative real numbers adding up to 1. If M is the maximum of
the five numbers.
a+b+cb+ctdc+d dre+fe+f+g
find the minimum possible value that M can take as a, b, ¢, d, e, f, g vary.
Hint: Append the four numbers a, a + b, f + g, g 1o the five given

9. Given a set M of 1992 positive integers none of which has prime factors > 28, prove that
M contains at least one subset of four distinct elements whose product is the fourth
power of an integer. What is the smallest number that can replace 1992 in this problem?

Hint: Refer to Example 8 and imitate it

Chapter 13 Beginnings of Probability Theory Page 456



- BEGINNINGS OF
PrOBABILITY THEORY

bability" in our everyday language without realising

We use the words ‘probable and pro

that there is mathematics involved in the usage of the language. When we say, ‘probably
it may rain today’ it is usually an innocuous statement reflecting our understanding of
the local weather. When the newsreader announces that there is a high probability that
she actually has, behind her, the support of all the mathematical

it may rain tomorrow, 4
analysis made by the weather forecasting section of the Meteorological Department.
Though she herself may not d: d the math ics of it, bod. h

in tite higher echelons must have precise statements before them which look very
much like the following: There is an eighty per cent, chance that it will rain tomorrow.
Here it is not the number ‘eighty’ that matters. What matters is that there is such a
number floating around. Where did this number “eighty’ come from? It comes from
the fact that scientists have analyses several similar situations in the past, presumably
a large number of them. Eighty per cent, of those times it had really rained and that is
the reason it is being said now there is an 80% chance of its raining LOMOITOW. Thus. in
order to make a statement; ‘It is probable that such and such an event might happen’,
one must have a knowledge of a record of such events in the past or one must be
capable of counting all possible occurrences and non-occurences of the event.

For instance one says that if we toss an unbiased coin ( ‘unbiased’ means: no side of
the coin is unduly loaded; or, in other words, nature has nothing to distinguish between
the two sides of the coin), the probability that we get heads is the same as the probability
that we get tails. Or. what is the same thing. ‘head” and ‘tail’ are equally likely in the
free toss of a single unbiased coin. So we say, the probability of each is 1/2. In this
lang we are tacitly ing that there is a total of ‘one’ for the sum of all
probabilities. What does one mean by this “all'? The meaning of this "all is the starting
point of the theory of probability. The “all’ means the ‘universe of all events'. We have
a technical name for it. It is called the ‘SAMPLE SPACE".

We shall elaborate this concept now. In the experiment of tossing a single coin,
though the actual outcome of a single toss is not predictable. the set of all possible
outcomes can be visualised in advance. This set of all possible outcomes of an
experiment is called the sample space of the experiment. We usually denote it by S.
Here are some illustrations, to which we shall come back repeatedly.

(a) Suppose our experiment consists in the tossing or flipping of a single coin. The
sample space is
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: S=(HT}
where H means the outcome of the toss j
. tossis a head and 7 means the outcome is a
(b) If on the other hand the experiment consi . .
whose faces are marked with 1,2, 3, 4, 5":‘::‘;nl:lemgam.fmm
$={1.2,3.4,5,6) space is -

where the outcoriie 'i" means that  appeared
: on the top fz i
(c) Suppose the experiment is the tossing of two coins. l;;’;e :em::'e spwedw.men i
e S=((H.H), (H,T),(T, H), (T, 1)) o=

where (H. H) means both coins turn up heads: i

up hcm:j\‘. while the second coin turns u‘;) tail; (}(’}’i)nmnsml;emﬁels?:(oi:onmm i
tails and the second coin turns up heads; { fin =
ey up s; and finally, (7, 7) means both the coins

(d) Suppose the experiment consists i i
8 1sts of throwing two dice. The sample space would

S={Nli=12,..6:j=12,..6).
Here (i, j) means i on the first die and j on the second die.
(e) Suppose the experiment consists of measuring i he life i
3 S g in hours the life time
light cell. The sample space consists of all nonnegative reals, so that e
S={x:0<x<oo}.
Now we define an event as a subset of the sample space.
. In (a) above. the event
that a head appears is the subset [} of the sample space. In
X , the
appears in the second coin is the subset e © ventthata Head
{(H, D AT. H)}.

In (b), the event that the die throws up an odd number is the subset {1.3,5} of the
sample space. -

In (d). the event that the two dice throw up a sum of 8 is the subset

((2.6).(3,5).(4.4),(5.3). (6, 2)}.

In (e). the event that the torch light cell has a life not greater than 12 hours is the
subset {x: 0 <1< 12},

As soon as we define "events’ as subsets of the sample space we can transfer the
hn_guage of set theory to the world of “events’. Thus the union of two events is the
union of the two subsets defining the two events. As illustration, in (b) above, if E is-
the event {1, 2, 3) and F is the event (2, 3. 4}, then

EuFisthéevent {1.2. 3,4} *)
and E N Fis the event {2, 3} )
Th_l: intersection £ A F of two events is usually written EF. Translating the meaning of
unions and intersections in the case of events we have the following interpretations:
EU F means the occurrence of either £ or F which means, in the illustration (*), the
throwing of any one of the numbers 1, 2, 3, 4. The event EF. on the other hand, means
both £ and £ and in the illustration (**) it means the occurrence of 2 or 3.

Another concept that we use from set theory in the algebra of eveats is £ and not-E.
IEis the event, (2. 3.4) in (b) not-E means the non-occurrence of 2, 3,4, that is, the
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occurrence of {1, 5,6). So E and not-E (which is also written as E¥) are complemengg
of each other. EX occurs iff E does not occur.

The union and i of nts can be ded to any number of evenys,
and in fact, to an infinite number of events without difficulty. Thus if £y, Ey, E;, ... are
an infinite number of events, the event

vE

is the event which denotes the occurrence of either one of the,E/'s. In the same manner,

A E, , which is written as E, E; Ej.... is the event which denotes the occurrence of a])
iml

of them simultaneously. In (e) for example. let
E;=(x10<x<i), foreach .

Then AE, =E EyEs...=(x10Sx<1).
=l

In other words the life of the torch cell being one hour or less is an event which means,
E,, has occurred, E; has occurred, E; has occurred and so on, an infinitum.

To summarise what we have done so far, we have called the set of all outcomes (of
an experiment) the sample-space, and every subset of it an event. The third fundamental
concept in the subject is the association of a number, called PROBABILITY. to every
event of the sample space. But we are not supposed to do this arbitrarily. This association
of probability P(E) to every event E has to satisfy the following three Axioms, in order
to be both meaningful and useful.

AXIOM 1 0sSPE)<]

In other words, the probability of every event, that is, an outcome or a set of
outcomes, is a number between 0 and 1, both inclusive.

AXIOM 2 PS)<=1

In other words, the probability of the whole sample space considered as an
event ( = subset of itself), has to be 1. It is therefore called the sure event. One
of the outcomes listed under S is bound to happen.

Before we take up the third Axiom, we need to explain what are known as ‘mutually
exclusive’ events. Recall that, already in chapter 9, we referred to two occurrences as
‘mutually exclusive’ if they cannot occur simultancously. That is, when one event is
occurring, the other event is (by that very fact) not happening. Now that we have
defined events as subsets of the sample space, it is easier to define ‘mutually exclusive’
events.

Definition. TWo events are said to be ‘mutually exclusive’ if their intersection (as
subsets of the sample space) is empty. We shall use the contraction ‘n.e.” for ‘mutually
exclusive’.

We shall take up specific examples of events from the five sample spaces we have
already introduced. This will give a better understanding of the concepts.

In (a), where the experiment is the tossing of a single coin, § = (H, T} So the

events are ¢ ( = the empty set); (H}; {7} and the whole space S = {H. T}

[ ox Prossawy Theony

We define P(H) = 1/2 = P(T), Alreaq, _
didwedeﬁmP(H).lndP(T)as IIZ?HQ: ) =1. e o
+ails’ are equally likely whenever an up)
evenls constituting the sample
[ncidentally, the events that
__ ‘elementary’, in the sense that they are
the event {1, 2, 3} in the throw of a single di
of three events {1}, (2} and (3). Whereas, th
stand by themselves and make up the mp,;;:‘m. 12}, (3], (4). (5) and (6)
of (b). In the case of (), in which we toss two coin; i are the
HH.HT. TH;and 7T,

Now let us make an important assumption ;
that the elementary events of these mp::n in the ze of (a), (b), (c) lm? (d): viz.,
us (0 assign an-equal probability to the ele; Paces are equally likely. This enables
spaces. Thus we assign
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4 hall come 1
l"_“&lheinlnih'veumnnni;m)-l ,‘.M"’
space are 'W“hwhmmum
BT assumed 10 have the same probabilit
are calleq ¢ 4

1
to each elementary event. This gives,

in(a): P(H) =172 = P(D)

in(b): P(1)= 116=P(2)=P(3)=P(4)=P(5)=P(6)

in(c): P(H. H) = /4 = P(H, )= P(TH) = P(TT) and

in(d): PGi, ) = 1736 where i = 1,2, ~w6andj=1,2,..6.

Now let us discuss the rationale for (*). For § i i
number 1/2 to Q\c probabilities of the lfmi elzfvr:c“rf::nr::v::; 7: ]wlenzhlo‘;.‘ls; ;:eivl:::
deeper perception of what is happening. Note that the two probabilities P(H) and P(T)
add up to 1. But alrcady P(S) = 1. Is there a connection between these two 1's? This

connection is what is going to be postulated in the Third Axiom of probability. N
. Note
that {H} and {7} are-*mutually exclusive’ events. ‘ Y

AXIOM 3 For.any sequence (finite or infinite) of m.e. (= mutually exclusive) events
Ey, Ey, .., that is, events for which the intersection of any two of them is empty,

{36)-5 e
Thus P(H) = 1/2: P(T) = 1/2; further since (M)} and (T) are me., PHUT) =
1
PH) + P(T) = 5 +

1
= = 1 and this confirms with A(5) = 1.

As another illustration, take (b). Let E= [ 1,2) and F=(3,4,5, 6}. Here EF = 9. So
Eand F arc m.e. The Axiom 3 then says : P(E L F) = P(E) + P(F).

Here P(E) = P({1, 2}) = P(l) + P(2), since {1} and {2} are m.e.
) I |

=—4—==

3
P(F)=P(]3,4,5.6}) = P(3) + P(4) + P(5) + P(6), -
since (3}, (4}, {5] (6) are m.e.

. Similarly,
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0y O :
=5*6s'6’e

3 1
Thea PE F) = PE) + P = 13 +23=1 and this corroborates with P($) =1,

i i ingle die is
Again, probability ofthmwlngmoddnumbawnhumg
-P((I.S.S))=P(l)+?(3)+?(5)= 12,
i i ice (i.e., i le space (d))
Probability of throwing a sum of § with 2 dice (i.e., in samp)
N =P(l,4)+P(2.3)+P(3.2)+P(4.1)
=4x1136=1P9. - .
EXAMPLE there are 4 red balls and 7 green balls — all identical in size,
except for lhel c:l:’:a’:o ; stated — in a bag. You are asked to close your eyes and, from
the bag,

(a) if you pick one ball, what is the probability that the ball is red?

(b) if you pick two balls, in one shot, what is the pmbahili.o' that both are red?
(c) if you pick two balls one after another, without replacing the bgll that has ,b""
drawn, what is the probability that (i) one is red and the other is green? (ii) the
first one is red and the second one is green? .
(d) if you pick two balls one after another, replaing the ball each time f;ﬁer the
colour is noted, what is the probability that (i) one is red and the other is green?
(ii) the first one is red and the second one is green?
SOLUTION, We shall do each of these by two styles of approach. One is by looking
‘at the total number of events and then taking the prop ion of so-called v
events. The other is by looking at the elementary events in the sample space and then
making up the necessary event by a union of elementary events.
First Method (a) Picking onc ball from 11 balls can happen in 11 ways. Picking a red
ball from the 4 balls available can happen in 4 ways. These latter are the favourable
events. So the probability of drawing a red ball is 4/11.

11
(b) Picking 2 balls from 11 balls can be donc in [ 2 J = 55 ways. We assume that

each of these ways is equally likely. The number of favourable ways is the number

4
of choices of 2 balls from the 4 red balls. This number is [ 5 } =6

So the required probability = 6/55.

(¢) (i) Two balls can be drawn one after another (without replacement) from a bag
of 11 balls in 11, = 11 x 10 = 110 ways. Of these, the number favourable 15
the number of ways of choosing one red and one green from a total of 4 red

* and 7 green balls - which is 28 + 28 = 56 5o the required probability is 56/110
=28/55.

(if) As above, the total number is 110 ways. Of these, the number that is favourable
is 4 x 7 (Red first, Green next) = 28. So the required probubility is 28/110 =
14/55.,

(d) (i) Total number of ways in this case =11 x 11 = 12]. Number of ways of drawing
one red and the other green is =4 x 7 + 7 x 4 = 56. So the required probability
is = 56/121.

[ or Prosssur Tt iEi

(if) Total numbzrofw-yx-]z]_Nm“' z
. of
mdmmmmu,“,,z&;" *anlhcgr:;z;d
Methodweuscﬂ,eelcmmym“ S ‘;thel i .
take our elementary events in such a way that their equal likeli suuple space. We
(a) Picking of each particular ball is the event. Th :'”mhﬁ!
- They

are equally likely. Each of them has probabili There
e bally 4 11 capyy "2 Povabilty /1. Thereaefour e blls. So

(b) Picking of two balls in one shot is the elementary event, e (l l] -
There 2 )=

such. Each of them has probability 1/55. Of these, si inati
are there. So the required probability is 6 x 1/55 =:61;’§ombmm G
(c) (i) Picking two balls. one after another, without replacement, gi lementary
events. So there are 11, =11 x 10= 110 sa:ccll:. Oflha:.g:l‘:’:‘cg;;inuion of
one red and one green is satisfied by 28 ility i
0 son/ss y 28 + 28 = 56. So the probability is 56 x
(if) The sample space as above has 110 points. Those which represent *
o = t 2 =
and-green-next’, are 4 x 7 = 28, So the required probability is 28/1 IOI:EI?;
(d) (i) The sample space has 11 x 11 = 121 points. Of these the *one-red- one-gmen:
combination belongs to 28 + 28 = 56. So the probability is 56/121
(e) (ii) The sample space has 121 points. Of these those that represent the ‘first-red.
second-green’ combination are 28 in number. Hi ility i %
11121 = 28/121 RS s
EXAMPLE 2. A fine arts association stages a play enacted by an amateur drama
troupe. It allows five complimentary family passes to the members of the troupe who
are 5 men. viz.. a. b, c. d and e and 3 women, viz., x, y and z. What is the probability
that the persons who get the passes finally include eithe? the four men a, b, c, d or the
three women x. y. = or the combination a, b, ¢, x, y?

SOLUTION. l.ct us assume that when the passes are finally distributed, no preference
or partiality is shown. Then the sample space contains [i] = 56 equally likely ways.

Of these the number of ways which include a, b, ¢, dis the number of ways of choosing

1
bede abedx abedy. abed: The number of ways which include the 3 women

. ) 4
one person from the remaining four in the troupe. This is [ ) =4. In fact, these are a

5
is (2] = 10. These are xyzab, xvzac, xyzad, xyzae, xyzbe, xyzbd, xyzbe, xyzcd, xyzce,
xyzde. The number of ways which include the combination abcxy is just 1. Call these
three events £, £, G We note they are m.e. So the required probability P(EU FU G) =
PE) + P(F) + P(G) = 4 x 1/56 + 10 x 1/56 + 1/56 = 15/56.
We shall now prove a few casy theroems on probability.
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Theorem 1.If E* is the event complementary to E, then P(E) =1 - P(E).
Proof. EmE(:m-Dmmz.Mme(EuE)=P(E)+P(er)
Le..l:P(S):P(D+P(E‘)whichgivesP(E")=l-P(B. ) )
As an illustration, the probability of throwing a sum # 5 with two dice
=1 -P(dlrowofasum:S).
But P(throw of a sum = 5)
=P((1,4}U (2,3} U (3.2} Y (4 )
=1/36 + 1/36 + 1/36 + 1136 = 4/36 =1/9.
So P(sum#5)=1-1/9=8/9.
Again, Prob (sum 2 6)
=1-Prob (sum=2,3,40r5)
=1 —(1f36+2/36+3/36+4/36)=26136= 13/18. Q
Corollary (to Theorem 1) P(¢) is always zero. For axiom 3 gives P(S) = 1. But
@ =550 P(@)=P(S)=1-P(S)
=1-1=0. Q
Theorem 2.1f E C F, then P(E) < P(F).

Fig. 13.1

Proof.See Fig. 13.1. Either with the help of the figure or otherwise one can prove that
F=EU(EENnF)=EVEF.
Since E and E°F are m.e. (= non-overlapping) we have
P(F) = P(E L E°F) = P(E) + P(EF)
This shows that P(F) 2 P(E) since P(EF) 2 0. Q
As illustrations note that
(i) Probability of drawing two kings from a pack of 52 cards is 2 probability of
drawing two aces, two kings, two queens and two jacks out of the pack.

The former is, =L
52
2
HEHENEY)
x
while the latter is 2) \2) \2) \2),

(if) In five tosses of an unbiased coin,
prob (head appearing at least twice)
< Prob (head appearing at least once) ™*
This is verified because,
Prob (head never appearing)
=P(I\T.T,T,T) = 1/32.(Consider all elementary events of the sample space).
Prob (head appearing precisely once)
=5x1/32=5/32
So Prob (2H’s or 3H's or 4H's or SH's)
=1-(1/32 +5/32) = 26/32
and Prob (1H or 2H's or 3H's or 4H’s or SH's)
=1~ 1/32 = 31/32. Hence the inequality (*)
Theorem 3. For any two events E and F, P(E U F) = P(E) + P(F) - P(EF).
mt. Look at the events as subsets of the sample space. Consult Fig. 13.2.
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£ F

Fig. 13.2

The portions £~ (EN F), ENn Fand F-(EN F)
are marked as sets [, I and I11. These three are m.e. So
P(E U F) = P(I) + P(II) +P(ITT)

But P(E) = P(I) + P(Il)
and P(F)= P(III) + P(I1)
So P(E) + P(F) = P(I) + P(IIT) + 2P(IT)
= P(I) + P(IID) + P(I1) + P(Il)
= P(EVU F) + P(ID)
= P(EUF) + P(EF).
So P(E U F) = P(E) + P(F) - P(EF). u}

As illustration, Prob (throwing either an even number or a sum of 2, 3, 4, with two
dice) may be calculated as follows.
Let E =event {2, 4, 6); F=event (2,3,4}.
Then EUF={2,3,4,6). P(E U F) = 11/36 (Why ?)
P(E) = 9/36; P(F) = 6/36; P(EF) = P(2, 4) = 4/36.
P(E) = 9136; P(F) = 6/36 1/36 = P(E L F).
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Independent events

Definition. Two events E and F are said to be independent if the probability of
their simultaneous occurrence is the same as the product of the probabilities of their
individual occurrences. In other words, E and F are independent if

. P(EF) = P(E) . P(F).
Two events are said to be dependent if they are not independent.
As illustration, consider the experiment of drawing a card from a pack of
52 cards. Prob (card drawn is a diamond) = 13/52 = 1/4.
Prob (card drawn is a king) = 4/52 = 1/13.
Prob (card drawn is the King of Diamonds) = 1/52
If we call the first two events E and F, the third event is EF; and we have
1 1 N
P(EF)=§= XE =P(E). P(F)
So E and F are independent. .

Recall the discussion of independent events in Chapter 9. Note also the distinction
between mutually exclusive (= m.e.) events and independent events. The former corres-
ponds to non-overlapping sets. The latter has no corresponding concept in set theory.

In the sample space (d) consisting of the experiment of throwing two dice, let. event
E be the throw of 10. This consists of the following points of the sample space

((4,6),(5,5), (6, 4))
and so has the probability 3/36 = 1/12. Let event F be the event that no die shows 5.
The points of the sample space corresponding to this are {(x, y): x # 5. ¥ # 5}. The
probability of this event is 1 - 11/36 = 25/36. The simultaneous event EF NFis
{(4,6), (6,4)} has probability 2/36 = 1/18. Clearly
P(EF) # P(E) . P(F).
So E and F are dependent events.

The m.e. sets d to m.e. events, m.e. sets are just non-overlapping
sets. But one should guard against thinking of non-overlapping sets as corresponding
to independent events. In fact, the opposite is true. Whenever there are two independent
events, there should be an overlap of at least one point, between them in the sample
space. This is proved in the following simple theorem.

Theorem 4. If E and F are independent events with p bilities, the
corresponding sets of the sample space must have at least one common point.
Proof. Let A and B, be the sets of the sample space corresponding to the events £ and
F, which are such that

P(EF) = P(E), P(F) with P(E) 20, P(F) #0. IfAn B= @ then P(EN F) = P(9) = 0.
So either P(E) or P(F) is zero. This contradicts the hypothesis that neither of P(E),
P(F) is zero. Hence A N B # @. Hence the Theorem.
Tlustration. In the dealing of a pack of 52 cards, Prob (dealing an ace) = 4/52 =1/13
and Prob (dealing a spade or a club) = 26/52 = 1/2. Now if we call these two events £
and F, P(EF) = Prob (ace of spades or ace of clubs) = 2/52 = 1/26.

So P(EF)= P(E) . P(F).This means E and F are independent. The sets ¢ pondi
to E and F are

{4 cards of ace}, {all 13 spades and all 13 clubs}

Their intersection is {ace of spades, ace of clubs}.

EXAMPLE 3. A deck of cards is dealt

dealt s () a King (i a spade (i) ,h,ﬁgi}m“,""”’"""“"""'“ hatonticand
(0 the first king (i) the first spade (iif) he king of Sdied e
SOLUTION. (a) (i) There are four kings ang dxe::ad“ e |
aking occurring is 4/52 = 1/13, This s g
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172 as it always was.

In the dealing of cards. if on the .
happened i the fist 9 deal, then mm:-;:;ﬁfnyw :- au: flo‘;;':‘:h 2nd such  thing
Otherwise it is the same 4/52 (= 1/13) for all the degl! might be different.
(ii) Similarly the answer for the Y
13/52 = 1/4.
(iii) There is only one king of spades. So the
(b) (i) Now we are told that the first9
should be a king. The probability of this

probability ofaspadcoccnn'ng at the 10th card is

required probability is 1/52.

MdebeaHngmdlhmthglcnth
happening is

(-0
1B) "5

(#f) Similar o the above. The answer is
9

(-2

47" 52F

(iii) |-qul
52) "2

EXAMPLE 4. Once upon a time there was a dictator. An astrologer forecast something
bad l’_or him; so the dictator awarded a death penalty to the astrologer. The latter pleaded
Eor h_ls life, so the dictator gave him a chance o save himself and decreed as follows:

Twill allow you to put two white balls and two black balls in any manner you like ix;
two urns without disclosing it to anybody. My executioner will choose one of the urns,
dip his hand into it and take out a ball. If the ball is black, he will cut off your head. If
the ball he picks is white, your life is saved. Try save yourself if you can”. What would
You advise the astrologer to do, in order to give himself the maximum probability of
saving his life?

The diffe possibilities of di ions of the 4 balls into the two umns are
Pictorially depicted in Fig. 13.3.

“laallaa) ~Lo]bas
wloalloa] *| oo

Fig. 133




466 -

In Alternative 1. Prob (white ball) = Prob (white ball in the first urn) + Prob (white

ball in the 2nd um)

L
2
- 1
In Altenative 2,itis =7 2
1 1
In Altemative 3,itis =7

1 1
In Alternative 4, it is =5X0+§ x23=1/3. '
Thus in order to maximize his probability of saving his life, the astrologer shquld be
advised to go with alternative 2. S
E!:IAMPLEOS. Go back to the problem of n people checking in their umbrel{as ?nd at
the end of the party none of them receiving their own umbrellas (Beginning of
Chapter 12). What is the probability that none receives his umbrella?

 Beapownas o= Prosssury Treony

w;zad::& )}rem;ls ?itamgnds “:nd clubs be denoted b
s ails of tossing the coj i
:::snhs of the throw of lhegsingle d?cb:etn:::d?yu;‘e? ;I ':l ;T:d:ﬂm b
us assume that the elementary e i it dea g
Iik;;‘: those associated with the ll:g o:::c:m‘::ll;;lfl:rm e lmeql.'ﬂ")'
with the throw of the die be equally likely. e
Now the points of the sample space are:
(51,52, 53,54, 55, 56 ;
¢H, cT;
ds, de, dh, dd ;
hs, he, hh, hd )
There are 16 of them. First let us note-that these 16
know that P(s) = 1/4 = P(c) = P(d) = P(h). But wh
breaks as 6 elementary events, viz.,
sl, 52, 53, 54, 55, 56
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Y the small letters s, h,dand c.

are not equally likely. For, we
en the event s (= spades) itself

SOLUTION. Denoting as we did in the Exgmple cited, the number of d
of n objects by D, the required probability is D,/n! )

Important note on D,/n! This probability p, = D,/n! that no person gets back his
umbrella behaves in an interesting manner as becomes large. Actually

1 .1
pa=— ottt () <7

2! 3!
The calculation of the value of p, for the first few values of n is given below.
Numbere of Probability p, that no
umbrellas person gets his own
umbrella
2 0.500000
3 0.333333
4 0.375000
5 0.366667
6 0.368056
7 0.367857
8 0.367882
It can be proved with the help of higher that these p ilities approach
a number
/e = 367879...
where e=2718281 ...

This number e, like the number T, plays a very major role in several branches of
mathematics.

EXAMPLE 6. Consider the following experiment. From a pack of 52 cards draw @
card. If it is a spade throw a six faced die. If it is club toss a coin. If it is diamonds or
hearts, replace it in the pack and draw a card once again. Set up a sample space for
this experiment and assign probabilities to each elementary event in the most reasonable
way.

itis ble to expect
Pislus2Us3UsdUsS v s6) = 1/4.
But 51. 52 etc., are m.e. Therefore
P(s1) + P(s2) + P(s3) + P(s4) + P(s5) + P(s6) = 1/4.
On the other hand,

51,52, 53,54, 55, 56 are equally likely so each of them should have probability 1724,
By the same reason. ¢, ¢T should have each a probability of 1/8 making a total of 1/4
for the probability of ¢. which is as it should be. And, similarly,

Ptds) = 1/6 = P(dc) = P(dh) = P(dd)
and Phy) = 1/6 = P(hc) = P(hh) = P(hd)
Thus the 16 elementary events have probabilites ;

1724, 1724, 1724, 1724, 1724, 1724 . 1/8, 1/8 : 116, 1116, 1716, 1/16 ; 1116, 1116, 116,
1116, totalling |

EXAMPLE 7. A closet contains 12 pairs of shoes. If 8 shoes are randomly selected
what is the probability that there will be

(a) no complete pair, and (b) exactly one complete pair?

o : . (24

SOLUTION. (¢) The number of elements in the sample space is (28 J The event that
no complete pair is in the choice happens as follows. Choose 8 pairs out of the 12

A . 12
pairs. This can be done in ( 3 ) ways. For each such pair choose only one of pair,
avoiding the other. This can be done 2% ways. Thus Prob (no complete pair)

A

6 ‘
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i ) o 8 shoes with only one
(b) T« sample space again has (8] points. To choose y

complete pair, first choose the complete pair, in q ways.

the remaining 11 pairs choose 6 pairs from which you then

Keep it aside. From ;
g)shoesfmmea«r:hpair.'l'hisctlnbedonein(6 ]x 2

choose 6 single (unmatchin:

ways. -
Thus we get the required probability as

1) ¢
le(G)Z

—_—

24
EXAMPLE 8. A pair of dice is thrown until either a 4 0r6 appears. Find the probability

that a 6 occurs first.
SOLUTION. Let E, denote the event that 2 6 occurs in the nth
occurs in the first (n — 1) throws. The probability for this is calculated as follows.

throw and no 4 or 6

Sample points corresponding to 4 are
(1,35 2.2: G, 1.
Sample points corresponding to 6 are )
(1,5); (2,4 (3,35 4, 2): G, D-
- cigaall O s
So P(E,) = (1-8/36)" 5136-[9) s
The probability that 6 occurs first

=P(E,VE,VEU ..)
= P(Ey) + P(E)) + P(E3) + ... since E;'s are m.e.
E =5/36 + 7/9 x 5/36 + (719 x 5/36 + ...

This is an infinite geometric series with first term = 5/36 and common ratio = 7/9.
Therefore, its sum, by the methods of Chapter 15, is

(5% 5,98

T1-7/9 736 2 8
This is the required probability.
EXAMPLE 9. From the set of all permutations of (1, 2, 3, ..., n} select a permutation
at random, assuming equal likelihood of all What is the probability that
(a) the cycle containing | has length k?; (b) 1 and 2 belong to the same cycle?
SOLUTION. (a) Let us count the p in which 1 is d in a cycle of
length k.

‘There are (: : :] sible ways of choosing the elements of this cycle.

There are (k- 1)! ways of writizng them as a cycle and (n - k)! ways of permuting the
rest of the numbers. Thus we get

[ Baosesnas o= Prosssurs Treony |

=
(:-l)(k_ D! (=Bl =(a-1y

ways of having 1'in a cycle of length k. So the desi; L
(-1 ed probability is
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al "
Note that the answer is ind: t of k. This is an i i ot

(b) Let us count the permutations in which 1 and 2 belong to distinct cycles. If the

=

Je containing | (but not 2 n-2

cycle 2 ) has length k, there are (k B 1) ways of choosing its
elements. (k- 1)! ways of writing them as a cycle wi :
the rest (which includes 2). Summing this ;vyndx th 1 and (n - k)! ways of permuting

n-2
k—l] (k= 1)X(n - k)!

for values of k from k= 1 10 k=n— 1, we get the total numbe: ions i i
5 , r of permi
1 belongs to a cycle distinct from that of 2, as p
n=1
n-2y (n-&)=(n-2)1x =0 _n!
ot 2 2"
Note here that the summation we have done uses methods from Chapter 15. Thus the
number of permutations in which 1 and 2 belong to the same cycle is n! — n/2 = n!/2
The desired probability is then n!/2 + n! = 172. )
EXAMPLE 10. If F is the set of all onto functions from A = {a,, ay, ..., a,) to
B={x, y. 2} and [ € F is chosen randomly what is the probability that
(@) f~ (x) has 2 elements in it?
(b) f~ (x) is a singleton?
SOLUTION. First let us count the functions from A to B which are onto. Consider the
three properties:

Range of the function omits x;
Range of the function omits y ; and
Range of the function omits z.
(Recall Example 4 of Sec. 12.1 for a similar strategy in the use of /EP).
Number of onto functions
= Number of those functions which have none of the three propertics above
=n(0), in the notation of /EP of Chapter 12
= Total number of all functions - n(l) + n(2) - n(3).
Now, total number of all functions is 3".
Number of functions whose range omits x is 2". So n(1) = 3.2"
Number of functions whose range omits x and y is just 1. Son(2)=3.
Hence, the number of onto functions = 3" 3.2+ 3.
(@) Among these we have now to count how many has 2 elements in f'(x). Pick
those 2 elements in the preimage of x. This can be done in n(n - 1)/2 ways. Map
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the remaining (n — 2) elements of A to the two elements y, Z of B. This has
2" -2 possibilities. Of these we have (o omit the 2 functions whose range is just
{y} or (2} in order to stay within the population of onto functions. Hence the
desired probability is
u(:;l) (21-2 2 2)
3"-32"+3
an-)Q""' -1
3"-32"+3
(b) We shall now count the onto functions which satisfy f(x) is a singleton. We
can choose this singleton in 7 ways. The remaining (n - 1) elements of A can be
mapped onto {y, z} in 2"~ -2 ways. Thus the desired probability is
n2""'-2)
3"-32"+3

PROBLEMS

1. Two numbers are selected at random from 1. 2.
sum of the two numbers is (i) 0dd? (if) even?

2. Acommittee of 4 is to be chosen from a group of 16 people. What is the probability that
a specified member of the group will be on the committee? What is the probability that
this specified member will not be on the committee?

3. Consider the following experiment: Toss a coin. If it falls heads, throw a six-faced dic. If
it falls tails, toss it again. Set up a sample space for this experiment and assign reasonable
values to the probabilities of the elementary events. Assume that the elementary events
associated with tossing the coin are equally likely and so also are the elemetary events
associated with throwing a die.

4. Acommittee of seven is to be selected from 10 men and 8 women. What is the probability
that (@) the committee so formed has a majority of women? (b) the commitice includes
members of both sexes?

5. Ifanumber xbetween 1 and 200 (both inclusive) is picked at random what is the probability
that ged (x,6) > 17

6. If xis any integer such that 1 < x < 100, what is the probability that x is a prime”

7. IfA=p,! + | where p, is the nth prime number, what is the probability that a number
picked at random from the sequence

A+1LA+2,. A+n
is a prime number?

8. In a high school public examination 15% of the students failed in Mathematics and 12%
of the students failed in English. Also 3% of the students failed in both Mathematics and
English. In an experiment of random selection of students from the school consider the
two events; “failure in Maths™ and “failure in English". Are these two events independent”?

9, In a residential university a survey revealed that 60% of the students read magazines in
the regional language, 50% read English magazines, 30% read magazines in a foreign
language. Also 30% read ‘magazines in English as well as in the regional languag 20%
read English magazines as well as foreign language magazines and 16% read regional
language magazines as well as foreign language magazines, while a bare 5% read all
three kinds of magazines. If a student is randomly selected from the rolls of the University
what is the probability that he does not read any magazine?

.. 10, What is the probability that the

Chapter 14 Beginnings of Number Theory Page 472

10. Fisthe setof all functions fro,
of selection of functions fro;:l ;:Is:-um joa3
probability that such a function has :':: o

11. Adeck off52 cands is dealt to four players in .

that one of the players receives |3 spageqs | - ©f Bridge. What is the probabili

12. Do Example 4 with three white baljs and Ihme *
three unl|s. Generalise to n white balls and n l)lbl.:k s
13. Generalise Example 7 to n pairs of shoes f; & Mh .
Assume 1 > 2m. Tom Which 2m shoes are randomly selected.

14. Agroupof 8 men-ndawomenismndm] ivi '
i the probability that both groups wi pa, 0 M0 W
Generalise by replacing 8 by 2n. i

15. A couple has 2 children,

(a) If the clder one is a girl, what is the
(b) If one is a boy, what is the probability that the other i 1
is a girl?

16. One picks two cards from a st
s standard 52- i probal
card is a spade and the second is not a kiﬁ;r"d ek Wi A licihe Best

17. Suppose that each child i
of the sex composition obfou: E:cio:hl::;:ﬂ ulul.ley Iike‘l
in the family, compute the probabilities of th’: f "flml
(@) All children are of the same sex. o
(b) The three eldest are boys, and the others are girl
(c) Exactly 3 are girls. .
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-setB=(q,

y/eF
5

e b.¢c).Ina random experiment
its range

is equally likely. What is the

buted in (a) two urn ; (5)
urns,

Probability that the other child is a girl?

ymbuboyorngirlincspecﬁve
ily. For a couple having 6 children
ing events:

(d) The three youngest are girls.
(e) The first, third and fifth are girls.
() There is at least one boy.



BEGINNINGS OF
Numser THEORY

14

14.1 CONGRUENCES

We saw in Chapter 2 that divisibility
Integers. In this section we introduce
describe divisibility and related properti

plays a very important role in the Arithmetic of
the notion of congruences which enables us to
es of Z in a compact form, at times leading to

some beautiful theorems in the Theory of Numbers. The theory of congruences was

first developed scientifically by Gauss (1777-1855) who gave coherence 10 a
i ion of di d special results about numbers of the earlier

centuries.
Definition 1. Let 1 # 0 be any integer. We say
10 b modulus n) if n divides a - b.
For example 3 =1(mod 2), 9 =0 (mod 3),
15 =39 (mod 4), ~4=-16(mod 6)
17=5(mod-12) —-4=10(mod7).
not actually a new idea, a = b (mod n) is the same thing as
fferent notation for a particular case of divisibility. But each

thata = b (mod n) (read as a is congruent

Note. Congruence modulo n is
nla-b. Itis therefore only a di
notation has its advantages.
Congruences are of great practical importance in everyday life. For instance, “Today

is Thursday’ is a congruence property (mod 7) of the number of days which have
passed since a fixed date. What day will it be 10 days from now if it is Thursday
today? In answering such questions we usually throw out multiples of 7 and take only
the inder for lation. The here is 3. So we count three days from
now thus (Thursday-1. Friday-2 and Saturday-3). Thus the answer is Saturday.
Expressed mathematically, this is nothing but the recognition and application of the
congruence 10 =3 (mod 7).
Proposition 1. For any integer n # 0, we have

(1) a=a(mod n) forevery a € Z.

(2) a= b (mod n) iff b =a (mod n) fora, bin Z.

(3)a = b (mod n) and b = ¢ (mod n) implies that a = ¢ (mod n) for any three

integers a, band ¢

(4) a=b (mod n) iff a = b (mod - n).
Proof.

(1) For any a € Z we have a —a =0 and n divides 0.

a=a(modn)foreveryae Z.
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(2) @a=b (mod n) implies that a — b = kn for i
@ ° = some k € Z which means -
-f-k)n.andhenceb-a(modn)wbenevera-b(modn) atb-a
(3);,:Ibu(m:d::.anil;-r(n;odn)implicslhnthmexiuinugcrslzmdlmh
—b=knandb-c = In. Th ~c=
-t ")'n erefore,a~c = (a-b) + (b-c)=(k+ln. In
) ::b (mod n) implies that there exists an integer k such that a - b = kn. This
- (zja‘l':lhala—b=(-k)(-n)ora-b(mod—n). a
Note (1), (3) mean that congruences (to the just like equaliti
:lhnr words they are (1) reflexive. (2) symmetric m:':'; :Ir:::l:']l‘i’vse")njw e P
roposition 2. If @) = a, (mod n) and b, = :
Also we have a1by = azb, (mod n).‘l':n oulzcr :/Zo(;'::d ) txa g *(lel;:z =5 (m:)d. ).
can be .added.‘ b d’ and also ‘multiplied’ ided the mod st same i
all, to give other congruences. S R =

Proof. If ) = a (mod n) and b, = b, (mod n) then there exist integers ky, k; such that

ay-ay=kynand b, - b, = kyn. i
Therefore,
(@) + b)) = (ay + by) = (a; - ay) + (b, =by) = (ky + kp)n
or ay + by = ay + by (mod n).
(@)= by) — (ay = by) = (a; - ) = (by = by) = (ky - kp)n
or ay - b, = a, - b, (mod n).
‘:tlms ay £ by =ay x by (mod n)
50 aby —ab, = -ay A
. 10y a;:l 5 ::lbz (‘;:)::;;”:(bl b2) = (kiby + kpay)n.
Caution. But congruences cannot be divided. For instance, 'D
8=12(mod) 2
and 2=4(mod) 2.
However, . (8/2) # (12/4) (mod) 2.
Again, .4 = 8 (mod) 4;
However, 2 # 4 (mod) 4.
Thus ka = ka’
does not imply asd
So also ay=ayand by =b,

with b; # 0, b, # 0, do not imply
(ay/by) = (ay/by).
How much of the division process can be
below.
Proposition 3. If a = b(mod n) and d is a common divisor
2 = rof aand b =
1 then a/d = (b/d) (mod n). ‘ el s s
:l:m){. a=b (mod n) implies that there exists an integer k such thata - b = kn. Suppose
x is a common divisor of a and b with @ = md and b = Id. Then we havea-b =
,’:" I‘ ) d = kn. Therefore (d, n) = 1 implies that m — [ divides k. This means that
~I'= (k/d).n = a multiple of n or m =1 (mod n). In other words a/d = b/d (mod n). Q

is shown by itions 3 and 5
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Proposition 4. Let fbe 2 polynomial with integral coefficients. (i.e.. fix) € Z ().
lfa!b(llndn)lhﬂlﬂa)lﬂb)(modn). )
Proof. Letﬂx)sao«ra,x+a,x3+,“+a,x‘vnlhn,»sZ,
Then ﬂn):a.,#a,a+aza’¢a,a‘.u+u,a'and
fib) =ag+ab+ad? +ayb’.. +abt
Now, by Proposition 2. a; @ = a/ (mod n) for j =*,2.3, .... kand ag = ag (mod n),
in using ition 2, we get

e aofa::nr‘:az 4o tadt=agtab+ah .. +ab* (mod n).
ie., fa) = fib) (mod n) Q
Proposition 3 has the following gencralisati
Proposition 5. (1) kx = ky (mod n) if x= y (mod n/(n, k)

(2) x=y(modn)fori= 1, 2iff x = y (mod [n;, n3))
Proof. (1) kx = ky (mod n) implies that there exists m € Z such that

IR .
k(x-y)=mn,11)cmfoma;—)(x NG

L k
i ides —— . (x=y).
This means that ®n divi s(k‘") (x-y.
_n_ L]_l
Bt Ko hom )~

and hence (_kn—) must divide (x, y). In other words,
,n

symod 2|
AL [(k.n)]

The converse part is left as an exercise.

(2)x =y (mod n;) i = 1, 2 implies that x — y is a multiple of 7, and n,.
Hence x - y must be a multiple of l.c.m (n;, n3) = [n;, n2]. In other
words x = y (mod [n), n;]). Conversely, x = y (mod [n, n;]) implies
that x — y = P[n,, n;] for some integer P. Hence x - y is a common multiple of n
orx=y(modn)i=1,2. a

EXAMPLE L. Find integers x such that 7x = 4 ( mod 5).

SOLUTION. We have x = 2, 12 satisfy 7x = 4 (mod 5). In fact, 7x = 4 (mod 5) iff
2x=4 (mod 5) (since 7=2 (mod 5)). Now 2x =4 (mod 5) iff x = 2 (mod 5) since (2, 5)
= 1. Hence, the required solution set is (... - 8,-3,2,7,12,17. ...}

EXAMPLE 2. Do there exist integers x such that 12x = 5 (mod 8)?
SOLUTION. All numbers of the form 12x are even while numbers of the form 5 (mod
8) are odd. Hence we do not have any solution.

EXAMPLE 3. flal < n/2 and \bl < n/2 and a = b (mod n) then a must be equal 1o b.
SOLUTION. Now lal < n/2 and 16l < n/2 imply that — n/2 < a, b < n/2. Thus a, b both
belong to the interval (- n/2, n/2) which is of length n. This means that lu — bl < n and
hence the assumption a = b (mod n) implies a - b = 0.

EXAMPLE 4. Write a single congruence that is equivalent 1o the pair of congruences
x=1(mod4), x=2 (mod 3).
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SOLUTION. x = | (mod 4) iffx=g
and x= 2 (m0d 3)iff x = 3 4 “0',';,'“'““‘”"5 z
522 (mod 3). Therefore any x of the eme Z.We‘noumns- 1 (mod 4) and
(mod 3:S0 X 1 (1m0d 4) and x w2 (g 3 im‘ﬁ:"ﬂ*ﬁm- 1 (mod 4) and x = 2
of 3 amzi)ﬂl_. or x'ﬂus (mod 1) (since [3, 4 = IZ}; “““;'::;5 is a common multiple
mod 12) is equivalent to the syst, % single congruence x = 5
isibiliy
SOLUTION. Let 1 be a positive integer, u;y:: TRy, 1o 13,
a(1000)% + ... + ay(1000)* where 0<4,<1000 ﬁ:l.ly:nle el ey
1113 and therefore i=0,1,2,... k. We note that 1001
1000 =~ 1 (mod 7)
1000 = - 1 (mod 11) and
1000 = -1 (mod 13),
This gives 7 = do + @ .. + (- 1)* ay (mod n) for n=7, 11 o 13
~ 7,1 or13dividesniffag—a, +a,— 4 (_ e !
o 1) respeiaivel 1+ = . +(= 1" a, =0 (mod ) or 0 (mod 11) or 0
For example, consider n = 1278465413, Then we have
=413 +465(1000) + (278)(1000)2 + 1(1000)
=(413-465+278 - 1) (mod 7)
S0-345-1=21(mod7)
n = (413 - 465 +278 - 1) (mod 11)
=26-3+3-1=5(mod 1)
7= (413-465 + 278 - 1) (mod 13)
=10-10+5-1=4 (mod 13).
EXAMPLE 6. Solve 17x = I (mod 180).
SOLUTION. We observe that 180 = 4.5.9. We search for solutions of the system:
17x=1mod4, 17x=1modSand 17x =1 (mod 9).
17x= 1 (mod 4) implies that x =1 (mod 4) as 17= 1 (mod 4) and (17, 4) = 1. Similarly
17x=1 (mod 5) is equivalent to x= 3 (mod 5) and 17x= 1 (mod 9) is equivalent to
x =8 (mod 9). The system reduces to
x=1(mod 4), x=3 (mod 5)and x =8 (mod 9).
x=1(mod 4) implies that x = 4n + | for some n € Z. Now 4 n + | = x= 3 (mod 5)
implies that 47 = 2 (mod 5); which implies that 4n = 12 (mod 5) or n = 3 (mod 5). This
givesx=4(Sm+3)+ 1=20m + 13 for some m € Z. Again, 20m + 13 =x=8 (mod 9)
implies that 20m =~ 5 (mod 9), Thus
x=20%+2)+13=180k+53, ke Z

gives the required solution.
EXERCISE 14.1

L. List all the integers between 100 and 300 which are 11 (mod 17).

2. If Pis a prime and @* = b* (mod P) then prove that a = b (mod P) or a = — b (mod P).

3. If fix)1s a polynomial with integral coefficients and if i) = k (mod ) then fla + nm) =
kand n for every integer m.
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4. 1f nis a perfect square and n? = k (mod 10) with 0 € k <9, find the possible values of k.
5. Ifn = a* where a € Z then prove that n=0, 1,5 or 6 (mod 10).

6. Prove that 4n% + 4 = 0 (mod 19) for any n.

7. Solve for n, Sn = 3 (mod 8). 8.

8. Solve for n, 8n = 10 (mod 30).

9. If x=y (mod n) then prove that (x, n) = (y. n).

14.2 THE THEOREMS OF FORMAT AND WILSON

We saw in section (14.1) that the notion of ‘relatively prime integers” plays a very
imp role in and related probl In fact, the number of positive
integers less than a given positive integer n and prime to n defines a function
¢ : N = N, having many interesting and useful properties.

This function is called Euler’s ¢—function, as we recall from Example 10 of Section
12.1. In addition we stipulate that ¢(1) = 1. From the definition we have ¢ (2) =1, ¢ (3)
=2,04)=2,0(5=4,0(6)=2,0(7)=6,0(8)=4,6(9=66(10)=4,6(11)=10
and ¢ (12) = 4. These can be readily checked by enumeration. For instance, the set of
positive numbers less than 12 and prime to 12is {1, 5,7, 11}: and hence ¢ (12) = 4. We
observe that a positive integer P> 1 is a prime iff ¢ (P) = P— 1.

Proposition 6. If dis prime tontheninany set § = (a, a+d, a+2d, ..., a + (n - 1)d}
the number of numbers prime to n is ¢ (n).

Proof. If a + kd=a + | d (mod n) then (k - /) d is a multiple of n. But (d, n) = 1 and
therefore n should divide (k — I). Now for any two elements a + kd, a + [ din S we
have 0 <k, I < (n - 1). Therefore Ik — 1 < n; and so n divides (k- /) implies thatk — /=0
or k = L. In other words all the n numbers in § are mutually incongruent modulo n. This
means that (a,a+d, a+2d,...a+(n-1)d}={0,1,2,..., (n-1)} modulo n. Further
ifa + jd=k(mod n) with 0 Sk < n—1,then (a + jd, n) = 1iff (k, n) = 1. Hence the
number of integers in S which are prime to n is precisely ¢ (). a
EXAMPLE 1. Let S = (13, 18,23, 28, 33, 38, 43). Then S has n = 7 elements and the
common difference d here is given by d = 5. We have (5,7) = 1. Also 13 =6 (mod 7),
18 =4 (mod 7), 23 =2 (mod 7), 28 = 0 (mod 7), 33 =5 (mod 7), 38 = 3 (mod 7) and
43 =1 (mod 7). The clements of S which are prime to 7 are 13, 18, 23, 33, 38, 43; They
are six in number and thus ¢ (7) = 6.

EXAMPLE 2. Let $=(-3,0,3,6,9, 12, 15, 18,21, 24). Then S has n = 10 elements
and the common difference here is d = 3. We have (d, n) = (3, 10) = 1. the integers in
S which are prime to 10 are — 3, 3, 9, 21; and therefore the number of integers in §
prime to 10is 4 = ¢ (10).

Proposition 7. If (m, n) = 1, then ¢ (mn) = ¢ (m) ¢ (n).

Proof. Let 1 €x < mn. Then (x, mn) = 1 iff (x, m) = | = (x, n) since (m, n) = 1. Letus
write the mn numbers from 1 to mn as a (m x n) matrix

1

2 r’::; §m+| 3m+1 (n=lm+1

3 m+3 2::2; 42 o (n-hme2
A=|. . *3 Ime3 e (n-pma3

k mik 2 }

R

We note that if (k, m) = 1 then eve, entry i
row has ¢ (n) elements which mrgﬁmkrol:‘:::pho?.w is
catries which are prime 10 both m and n then we pos 10, [T if We pick all the
ky k. et K © (m-th rows where (k. Wt ve them nnlhef(m) rows namely
prime 10 7. Hence the number of positive i;;mgm?::mmnmm AL numbe!s
precisely ¢ (m) ¢ (n). Then ¢ (mn) = O (m) 6 (n) whinever mn :nd prime to mn is
Corollary. If ny, ny, ..., n; are mutually prime then rip=l a
Oy ny .. n) = §(ny) o(n )
Proof. Follows immediately by induction, il
EXAMPLE 3. O2431) = (11.13.17) = 6(11) 6(13) 6(17)
=10.12.16 = 1920,
In the above example, 2431 is a product of distinct pri
Pprimes. Su = =
22132 Then ¢(n) = Q(Zz_) 6(13%). Now k < 132 and (k133 = lpi;"f'oiei::o?::::lde;m f
13. The number of multiples of 13 which are less than 169 is 12. Hence ¢ (132) E ::8
-12=169 - 13 = 156. The same reasoning tells us that o) =p-p. -
Proposition 8. If p is a prime number, then ¢(p) = PH1-1p)forke N,
Proof.lfk=I,(hcnl@(p):p—lsinccplsa ime;
} prime; and the siti
k=1.1fk> 1. the numbersiin (1,2, 3,..., p*} which are not pﬁmw“wp;‘;r;";ti?‘s:yr;r
2p, 3p. ... (P = 1).p. These are p* - 1 in number. i
Therefore oM =pt - p* = pH(1 = Up) forallke N [s]

Proposition 9. Ifn = pi p3: . pi is the unique prime factorisation of n withp, <p,
<..<pgthen ¢ (n) = n(1 = Vp)(1 - 1Up,) ... (1 = Upy).

prime to m. Again the kth

Q

Proof. For i # j we have p* p}’ = 1.

Therefore, &n) = o‘p," ) o(p§’ ) O(p:' ) (by Corollary to proposition 7)
= Pl (=1 p)p3(1=1py)... pi* (1= U py)
(by proposition 8)
=n(1 = Up)(1 = Upy) ... (1 = Upy). =]
Note. Thus we have a second proof, in preposition 9 of the evaluation of Euler's ¢-function,
done already in Example 10 of Section 12.1.
EXAMPLE 8. () 6Q4)=6¢(23)=24(1-12)(1-173)
=24(112) (23)=8
(ii) ¢ (3072) = ¢ (2'°.3) = 3072 (1 - 1/2) (1 - 1/3)
=3072 (12) (2/3)= 1024.
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EXAMPLE 9. Consider n = 26 = 64. The divisors of nare 1,2, 4. 8, 16, 32 and 64,
Now 6(1) + ¢(2) + &(8) + &(16) + &(32) + &(64)
=1+Q2-1)+@-2)+B-4)+U6-8)+(32-16) + (64 -32) =64
=64.
1
In general, the divisors of p* for any prime p are 1, p, p', ... p*' and p*.
Therefore JE‘Q(J)=O('I)+O([7]+O(;72)+“.+W)
=1+(@=-D+@=p) +..+ P - p)
=
Example 9 suggests that T ¢(d) = n may be true for every positive integer.
din

In other words

In fact it is true and we have the following.
Proposition 10. For any positive integer n we have

Lod)=n

din
Proof. Any divisor d of the positive integer n with prime factorisation

n=p pg py ... pf* isof the formd = p/ pl .. ph
where 0< b, < g, fori = 1, 2...., k. This gives

bk b\ n ) o ph
Loz o(ph p¥ ... p") oE op)o(p2:)... o pft)

Any typical term of the above summation is a term of the product

400+ 0p]) +-..o(pf ) ((1+ 6po) + 0(pD) +.. + 6(pi))

x (14 0(p) +0(p1) + ..+ 9{ it ))

Therefore  £6(d) = pi* pf ... pjt =n. a

EXAMPLE 10. For any positive integer n we always see that n° and n have the same
last digit. In other words 10 always divides n° - n. To prove this we must prove that
51(n*~n)and 21 (n*~n)forallne N.We have n* —n=n(n* — 1) = n(n® - 1) (n* + 1).
Ifn=0orn=%1(modS5). Itisclearthat5In’ —n.If n=+2 (mod 5)then n® =2+ 1
=0 (mod 5) and hence 5 | #° — n. Thus S always divides n® - n. It is casily scen that
21(n*~n)forallne N.Thus 10| (n* - n) forall n e N.

In fact, for any prime P we always have P | (n* - n) for all n € N. This follows from
the following theorem due to Fermat.
Theorem 1. (Fermat’s Theorem)
If Pis a prime and a is any integer prime to P then ”! = 1 (mod p).
Proof. Let S = {a, 24, 3a, 4a, ..., (p — 1)a}. Then by Proposition 6, cach ka € § is
congruent to some n € (1,2, 3. ..., p— 1} modulo p. Therefore a.2a.3a...(p - 1)a -
a@!(p—1)! = (p-1)! (mod p). Now (p — 1)! is prime to p and hence we may canccl(l]l

Corollary. If p is a prime and n is an integer then »” — n = 0 (mod p).
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Proof. If (n, p) = I then by Fermar'g theorem Beace
s et
(wp)or:v nsO(modp).lfmlheomuhand( Pra o) md —
s merefnrnf—a-!)(modp) n.p)allhenn-O(nmdp)upis
m\:he;\ ‘:rhei::vpﬁ('“e- We have ¢ (py = _ | Fermar's theorem
( ,: i Crb:ép)=|.|fwel2plx‘.epby.pmiu'y¢inm |
Fermat’s Venrcm omesa ¢ (n)= | (modn)whe gipeed hding
The proof is very much similar to that of Fm'smlh:;r(a i e
Theorem 2. (Euler’s theorem) " °
I nis any positive integer and q js Prime to n then o 6(n) =1 (mod
mogul;,e:idl:;l:(:: CAy<...<aé(n)be the positive integers Ies::;nm and pri
on. la. aya, a?a. - @9 (n)a). If q, =aa; (mod o)
since (a. n) = 1. This is possible iff j ekt T i)

S=(a,aa, aa...a¥g) = (n)
4.010.00..8%)a 5 8,005, a4 (mog o (a1, ay. ... ™) (mod n)

ie., a*aya;..a% 2 @a3a3...4% (mod n)
Now (@), ay. ... a¥%", n) = | since @,m=1forj=1,2, . o).
a*"” = |(mod n) ‘ a
Remark. Fermat's theorem is a special case of E

uler’
isaprime ¢ (p) = (p - 1),  theorem, because whenever p

EXAMPLE 11. Let S = (2, 3,4,9) we see that

=26= -9=7.8 (mod 11). Therefore 123456789= !
= IQ(mod 11 1 (mod 11) Thus 10! + | is a multiple of 11. Ifgwelnfam;lla:nfl lI:oy
aprime p > 3 and take § = (2, 3, 4, - P =2}, we observe that the (p - 3) elements in
S can be paired of such that the product of the elements in each pair is congruent to 1
modulo p. Fix any a € S and consider g, 24, 3a, 4a, ... (p-2)a, (p - a. If ja = ka
(mod p) then j =k (mod p)since (a, p) = 1. This is possible only if j = k. Thus (a, 24,
3a,...(p-Na) ={1,2.3, <P = 1) modulo p. mmfm,lhercexisuauniqube {1,
2.3...p-1}suchthatab=1| (mod p). Buta# 1 or p - | implies that b # 1 orp—1.
Inother words foreveryae § = {2,3.4, ..., p-2} there exists aunique b € S such that
ab= 1 (mod p). This proves our earlier observation that the elements of § can be paired
of such that the product of the elements in cach pair s congruent to | modulo p. This
fact leads us 1o the following theorem.
Theorem 3. (Wilson’s Theorem) If p is a prime number, then p divides (p ~1)! + 1.
Proof If p = 2 or 3 the theorem is readily verified. Assume now that P isaprime bigger
than 3. Then by our observation just preceding the theorem we see that 2.3.4.5....
(P-2)= 1 (mod p) and hence (p - 1)! = (p - IY(mod p) = - 1(mod p). a
Theorem 4. If (p — 1)! + 1 =0 (mod p) then p is a prime.
Proof This theorem is the converse of Wilson's theorem. Let (p ~ 1)! + 1 = np for
some integer . If k is a divisor of p different from 1 or p then k divides (p - 1)! as well
a np; which means that  divides 1. This is impossible since by our choice 1 <k <p.
Hence p must be a prime. Q
Theorem S, If d = (a, n) then ax = b (mod n) has a solution iff d divides b, When d
divides b we have & mutually incongruent solutions.
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Proof. ax=b (mod n then ax — b = ny for some integer y. This gives ax 4
(=n)y 3”1:: eqnano:| has a)solul.ion forx, yinZiffd = (a, n) divides b. Therefore
ax = b (mod n) has a solution iff d divides b. When d divides b let x = Xo, ¥ = y be a
particular solution of ax + (~ n)y = b, guaranteed by the corollary to Theorem 3 of
Chapter 2, Section 2. Also, by Example 12 of Section 2.2, any other solution is of the
form x = xo + nl, y = yo +al/d with | € Z. The solutions X, Xo +n/d, xo + ;n/d, o Xo+
(d - 1)n/d are all mutually incongruent solutions of ax = b (mod n). Usm; Euclid’s
division algorithm, we see that these are all the mutually incongruent solutions. (The
details are left to the reader as a simple exercise). Q
EXAMPLE 12. When a particular set of n objects is put into bags each containing
three we are left with one object; when put into bags each containing four we are left
with two; and when put into bags each containing five we are left with three. Find n,
SOLUTION. This problem is equi lving the ing system of es
n=1(mod 3), n =2 (mod 4), n =3 (mod 5). By trial and error one finds that n = 58 is
a solution. Now, we are faced with the following questions.
1. Do we have a solution for such a system of congruences?
2. How to find all the solutions of such a system, when solution exists?

The answers to these questions are given by the following theorem.

Theorem 6. (Chinese Remainder Theorem) Letny, ny, ns..., ny be k positive integers
which are pairwise relatively prime. If a;, @, ... @, are such that (a;, n)) = 1 forj=1,2,
..., k then the congruences

a;x=b, (mod ), axx = b, (mod ny) ... agx = by (mod ny)

have a common solution which is unique modulo [ny, ny, ... 7).

Proof. Consider a;x = b, (mod n)). Since (a;, n) = 1, we always have a solution for

ax = b; (mod n;) whatever be b, (Theorem 5). Choose a solution C, for ax = b, (mod n,)

forj=1,2,...k. Then a;C;=b;(mod n)) forj = 1,2, ..., k. We have [ny, na, ... ] = mymy
... mysince ny, n; ..., ny are pairwise relatively prime. Call this number M. 1f m; = M/n,

we see that (m;, n) = 1 (Why?). Solving myx = 1 (mod 7)) using Theorem 5 we have a

unique solution x = m, (mod ;). This gives mym =1 (mod n)). Take xo = cymmy’ +

cymymy” + .. + cymymy’. For i # j, n, divides m; = myn; ... ny/n;. Therefore
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apo = 2 a,c;mm(
i=l
=acmym (mod n)
= ag; (mod ny) since mym,” = 1 (mod n;)
= by (mod ny) forj=1,2,..k

Thus xo is @ common solution to our system of congruences. If x is any other solution
of the same system then xo = ¢; = x (mod ;) (by Theorem 5). This means that xo - x is
acommon multiple of iy, 15 ... n; and hence xo — x is a multiple of [y, ma, ... m) = M.

Therefore x = xo (mod) [ny, 7y, ..., ng). [s]
EXAMPLE 13. Given that 25x =2 (mod 9) and 55x =4 (mod 7) find the general value
of x . .

SOLUTION. 25x=7x=2(mod9)

This has C, =8 (mod 9) as a solution.
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Again, SSx=6x=4q (mod
e fovmi it

e S = =9and

M =4, my =4 such that mm," s | (mod 9)
Therefore Xo = cymym” + cmymy’ = 8 7 4 i
£2(mod 9) and S5 = 55332 = 630 (;;9;4) =332 satisfies 25x, = 25,3322 7.8
17 = ’

Now 332 = 17 (mod [9, 7] = 63) ang therefore a general solyti i
congruences is solution for the given

X=]7‘63kWhemkEZ

I£(n) | (n - 1), then prove that there is no

Prove that ¢(n) is even if n > 2, PR RS BN
If n has k distinct prime factors, then prove that ¢(n) > n 2%

Find all integers for which ¢(n) = 12, '
Letged(mm=LA=(x10sxsn
and xis prime to n). [f C = (na +
values x, 0 € x < mn - 1, xis pri

NoB e

~ 1 andxis prime tom) and B = (x10 S x$n- |

mblae A be B) then prove that C assumes all the

me (o mn, read modulo mn,

6. Use problem 5 to prove that ¢(mn) = ¢(m Wo(n) if (m, m) = 1.

7. Find all m, n such that ¢(mn) = ¢(n),

8. IfA=(ne N110divides 6(n)) prove that A s infinite.

9. Prove that there are infinitely many n for which ¢(n) is a perfect square.

0. Prove that for any given n € N, ¢(x) = n has only finitely many solutions.

L. Prove that if 5 does not divide n— 1, n, n + | then 5 divides i + 1.

2. Find the smallest prime that divides (p= 1!+ 1, where p is a prime.

3. Find all n for which 10i(n - 1)! + 1.

4. Let p be a prime. Then prove that x* = - | (mod p) has solutions if and only ifp=2or
p=1(mod4).

15. Prove that n” - n is divisible by 42 forall n € N.

16. Prove that n'? - a'? is divisible by 91 if n and @ are prime to 91.

17. What is the last digit of 3'%7 in the decimal representation?

18. If n is composite and n > 4, prove that (2 - 1)! = 0 (mod n).

19. For a prime p. if +* = y? (mod p) then prove that ¥ = y (mod p?).

20. Prove that (p - )! = p— 1 (mod m) wherem=142+3 4+ ..+ (p- 1) and p is a prime.

21. What is the least positive integer x such that x =2 mod 3, x= 3 mod 5, x = 2 mod 77

22. Solve 3x =11 mod 25, 3x= 11 mod 7, 3x = 11 mod 13.

PROBLEMS

. Prove that if n is not a prime and ¢(n)i(n ~ 1) then n has at least three distinct prime
factors, (use Problem 1 of Ex. 14.2).

2. If nis not a prime and ¢(n) I(n — 1) then prove that n has at least four distinct prime

factors.

. If d(n) denotes the number of divisiors of n then prove that d(n) < 2/ -

w
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4. nisa perfect number if 6(n) = 2n. ((n) stands for the sum of the divisors of ). If s o
perfeﬂnumberpmvem}:(lldlddividesu)=2.

5. Prove that for any given n € N, we can find ny, ny in N such that d(n)) + d(ny) = n.

6. vaﬂhll“(Ndividesnl:n“'ﬂ

7. Ifn=pft p3 .. pp* is the prime factorization of then prove that

= (=) 1)

o)) > (1 = Upf) (1 = 1pd) (1 = Vp) ... (L = Vpd).
8. Prove that | +a + a? + @+ ...+ a*! =0modnif(an)=1and(@-1,n =1
9. Solve x*=-1mod 13.

p-1
10. Rureachprimepsi.meSaSp-Iprove!.hﬂ( d ]— — 1)* mod p.

2n 2n

1. Fonpﬁmep.n<p<2uprovelhm["] =0modpbm(” ] #0 mod p*.

12. 1f pis a prime different from 2, 5 prove that
(i) pdivides infinitely many of the integers 9.99,999. ...

(ii) p divides infinitely many of the integers LI

13. 1f p= 3 mod 4, then prove that 2.4.6.8....(p ~ ) = £ 1 mod p.

14. Letmbe an integer grater than 2. Show that there existsana € (0,1, 2, ...m— 1} such that
22 = amod m has no solution in {1, 2, ...

15. Prove that (a + by = @® + b” mod p where p is a prime.

16. Prove that there exist 2" - 2 numbers that have n digits made up of the digits 1.2 and
contain each at least once.

17. Find all positive integers for which 27 + 1 is divisible by 3

18. Prove that 2903" — 803" — 464" + 261" is divisible by 1897 for every n & N.

19. Given integers a,b,c.d with d # 0 (mod 5) and m an integer for which am' + bm® + cm +
d =0 mod 5, prove that there exists an integer n for which dn® + cn® + bri +a =0
(mod) 5.

*20. 1f n =27/ (2P~ 1) where 2~ | is a prime number: find O(n).

21. Ifa e N, show that the number of positive integral solutions of x; + 2, + 31y + .. + nx,
= a is equal to the number of nonnegative integral solutions of v
+... + 1y, =a~-n(n+1)2. {Asolution of the above means a set {x;, X5, ..., x, | satisfying
X+ 2 4 3xy 4+ nx, = aelc.)

22. Determine all three digit numbers n having the property that n is divisible by 11 and /11
is equal to the sum of the squares of the digits of .

23. Solvex + y + z=a; X + Y2 + 2* = b%; xy = 2* where a and b are constants, Give the
conditions that ¢ and b must satisfy so that x, are distinct positive numbers,

24. (a) Find all n € N for which 2"~ | is divisible by 7.

(b) Prove that there is no positive integer n for which 2"+ 1 is divisible by 7

25. Let a,b,c be natural numbers such that @ + b + | is a prime greater than ¢ + 1. If
ky = n(n + 1), prove that (kg, — k;) (kpsz = ky) .. (kps = ky) is divisible by kikoky...k

26. Prove that there are infinitely many x € N for which y = n* + x is not

: prime for any n € N.

27. LetA={2t-31k=2,3,4,..}. Prove that A has an infinite subset B in which any (wo

elements are coprime.

+2v; + 30y
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28. Letm, nbe in N. Prove that (2m)! (@)
HHm!nlm + )1y is an
% - " ') is an integer,
29. Prove that 2%k +1 “t=0,l.2.m.n} i"'ﬂdivitiblebysf
" or i
30. Leta, b, c. dbeintegers relatively prime R0 g any integer n 2 0.
(x, y) for which ax + by = 0 mod & are j dentical with M.sepr{ove m'n the pairs of integers
31. mand n are natural numbers with | < <n. lrlhelulm,:"_h'_"hac-dysomdl
respectively to the last three digits of 19787, fing ry i digits of 1978 are equal
value, n such that m + n has its least
32 pandgarein Nandplg=1-112 4
divisible by 1979,
33, Factor the number 51985
5W0,

B-1Ud+.. 1318 + 171319. Prove that p is

—1i o
1nto a product of three integers each of which is bigger than
34, There are n boxes each containing
one ball in each of them. Repeat this operation.
after a finite number of operations, we arrive a; 'lf::n)
same number of balls. If (m,n) # 1, 5
equal distribution is not possible

wm:ballsini(.ulm<n:chmumboxuu\dpul

= 1. prove that it is possible that
on in which all boxes contain the
then there may be an initial distribution for which an
e y to be achieved by the above process.

35. Prove that for any set of n integers there is a subset of them whose sum is divisible by

36. Provelhzle2n+Iand3n+larebmhper{eclsqnxm|hen40lm il

37, Letn € N. Can you find n consecutive i i i
il ve integers each of which contains a repeated prime

38. Let A be a set of pril v are in A impli i
ey primes such that x, y are in A implies that xy + 4 is also in A. Show that

39. Prove that every integer k > 1 has & multiple which i vritien in

is< K i

decimal system with at most four different digits. e

40. Letn be a composite natural number and p be a divisor of a such that 1 < p < n. Find the
binary representation of the smallest natural number N for which
(14224 2"7) N — 1 is 2 multiple of 2*. L

41, Find all positive integers n such that (2 + 1)/a? is an integer.

42. Prove that for any positive integer n there exist infinitely many pairs (x,y) of integers
such that (i) g.c.d (x,y) = 1 (i) ylI(= + n) Giii) xl(y*n).

43. F}nd all(p.g.r) € NxNxNsuchthat | <p<g<rand(p-1)(g-1)(r-1)isadivisor
of pgr— 1.

44. Prove that (5%~ 1)/(5%% - 1) is a composite number.

45, Leta, be the last non-zero digit in the decimal representation of . Does the sequence of
@y, @y, ..., 4y, ... become periodic after a finite number of terms?
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15.1 INTRODUCTION

Suppose we are asked to find the su l
adding these numbers one by one. Another way is |
of these numbers and use them to find the sum more easily. For exam|
10=152+9=11 lndsoo_n.Thusv.hesumcanbe written as
L+ l0)+(2+9)§(3+8)+(4+7)+(5+6)4
The sum of the numbers in each grouping is equal to 11, and there are 5_such groups.
Thus the sum is 5 x 11 = 55. We have used the fundamental property of integers, viz.,
m+n=(m-1)+@+1)

for all integers m and n, and commutativity of addition in Z. The same reasoning can
be used to find the sum of n consecutive integers. The great Mathematician, Gauss
used the above reasoning when he was 10 years old! He took only, one minute to do an
addition problem for whict his classmates needed one whole hour to complete, and
that too, wrongly!

Theorem 1. The sum of the first n consecutive natural numbers is given by

n(n +1)
2
Proof. Let us denote sum by S,
S,=142 +.4n.
We car. write S, in the form
Sy=n+(n-)+.+L
Adding (1) and (2) and rearranging the terms, we get
25, =(1+n]+2+(-D]+. +[n+1].
We observe that any term on R-H.S. of (3) is of the form k + (n + 1 — k) which is equal
to n + 1. There are totally n such terms. Hence the sum 25, is given by
25, =n(n+1).
(—'-I‘Ll)'- (4)
2
REMARK. We can add any n consecutive integers. Letp + 1, p+ 2, ...p+ 1 be n
consecutive integers. Then
E+D+@+D+.+@+n)=np+(1+2+ .. +n).
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m of the numbers from |t 10. One way is to goon
o single out certain basic properties
ple, we have 1 +

)

(3)

This in tumn gives S, =n
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antl) nQRp+n+l)

—_—= G

Theorem | gives the sum qfall elements in a special subset of N; namely, the

- ”).;d\? i:ﬂ;,;‘)co;:slsd_er_lllnsl sed(mas the range of the mappingj‘ft.um 4l )2" :le)lifl:‘;;.
efined by fik) = k. Similarly escl(l.l/l.ll]...‘lln)cmberealiset‘h;"d; f
the mapping ffrom {1, 2, ..., n} into Q, defined by fik) = Vk, k= 1, 25Xy n.e(:‘::fiCd:r

=np+

" theset {1,3,5, 23}, the set of all odd integers between 1 and 23, This again can be

m]is.idzas the range of the mapping f: {1,2, ...,12} — N, given by fik) = 2k 1, k=1,
2,0 15

Definition. A real valued function u defined on the subset {1,2,..,n) of Niscalleda
finite real sequence. Here n may be any fixed natural number. We u;onnally denote the
function u here by its range {u(1), u(2),..., u(n)} and call this set itself a finite sequence.
Itis convenient to work with the range of u rather than u itself. It is customary to write
u;for u(i). We say ug is the kth term of the sequence . Thus we consider (i}, 4y, -... #y)
itself as a finite sequence. ey b
EXAMPLE 1. Letu(k)=k* k=1,2, ..., n. Then we get a finite sequence {1,4, 9, .., n%).
EXAMPLE 2. Letu(k) =2k k= 1,2, ..., n. We get the finite sequence {2, 4,6, ..., 2n}.
This is the set of all even integers between 1 and 2x.

EXAMPLE 3. Let u(k) = k/(k + 1), k= 1, 2, ..., n. Then we get a finite sequence
fractions (1/2,2/3, 3/4, ..., nl(n + 1)}.

A real valued function u defined on the set of all natural numbers N is called an
infinite (real) sequence or a (real) sequence for short. We denote this by (u,). For
example u(k) = k defines a sequence, the sequence of natural numbers itself. Similarly
u(k) = 2k defines a sequence, the sequence of even natural numbers. However, we
shall have no occasion to use infinite sequences in this book. Thus, hereafter when we
refer to a sequence, we assume that the sequence in question is finite.

We shall now introduce special classes of sequences called progressions. An
Arithmetic Progression (A.P. for short) is a sequence u defined by

uky=a+k-0d, k=12, ...n 5)
where @ and d are fixed real numbers. Here a is called the initial term and d is called
the common difference of the A.P. (u;). We observe that, given aand d, () is completely
determined. In fact, given a and d the corresponding A.P. i

a,a+d,a+2d, ....a+(n-1)d
Since wy = a + (k- 1)d, we also observe that

U, —w=dforallke {1.2,..n}. 6)

Thus starting from u, = a, the successive terms of the sequence are obtained by adding
the common difference d to the corresponding previous terms.
EXAMPLE 4. Let us consider the sequence defined by u(k) =k, k=1,2, .., n Thisis
anAP witha=1,d=1andug=1+k-DI
EXAMPLE 5. Let us take a = 1 and d = 2 in (5). We get

wp=1+k-12=2%-1
Thus the A.P. is the sequence of odd integers between 1 and 2n.
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A B c
i —,cot —,cot —
EXAMPLE 6. IfA. B, C are the angles of atriangle, show that cot 2 = :

— B inAP
inA.P. i sin A, sin B, sin Care in
;wnozwmfmmmosawewmm

cot (CP2) are in AP. — s o
= | SI=T) ——as Ae AL

it (s:(;)(:ic)‘ J(s-c)(:—a)‘ J(x—n)(s-b)

i s-a.s-b.:-cueinA.P..

-a.-b.-cminA.R

-2RsinA.—2RsinB.—2RsinEaminA.P..

ie., iff sin A, sin B, sin Carein A.P.

EXA! i i ABC, prove that if @, b, c are in
MPLE 7. With the usual notations for a triangle f : I
AP, ,then ry, ra, ryarcin HP. and conversely. Note that three terms are in H.P if their

ratios cot (A/2), cot (B12),

reciprocals are in A.P.
The ex-radii ry, ra, r3 are in HP.,
iff
ie., iff
ie., iff s—a,s-b, s—careinAP.
ie., iff b,~careinAP.
ie. iff a, b, careinAP.

Note. H.P. means Harmonic Progression. See Note under Definition 7 in Section 3.5

. We note that (5) may be written as

wky=a+d+d+..+d 5
where d is added (k - 1) times. +in(5) by ipli and d by r we can
define a new sequence u(k) =a . P~ 'fork=1,2, .. n We define a Geometric
Progression (GP.) as a sequence

uky=art-' k=1,2,...n
where a and r are fixed real numbers. Thus the above GP. is given by

(a, ar, ar. ....ar""),
and this is determined once we know a and r. Again a is called the initial term of the
progression and r is called the common ratio of the progression.
If a = 0, then u(k) = 0 for all k in (7). Thus the sequence (7) reduces to the constant

sequence 0,0, ..., 0. If r = 1, we get the constant sequence (a), we also observe that

=

Uiy

— =r fork=1,2....n-1. (8)
L

Thus any particular term of a G.P. is obtained by multiplying the previous term by r.

EXAMPLE 8. The sequence (1,7, 7%, ..., 7"') is a GP. with initial term | and common

ratior.

Jo——

EXAMPLE 9. If wetake a = 1 and r = 1710, we get the GP.
{ S 1
This can also be written in the form
1,0.1,001, ..., 0.000..01,
where the kth term is 0.00 ...01 with (k-Z)mlhaﬂlededmlpm'm.

Our interest in this chaptet is not the sequences themselves, but the sums defined by
some special If we have a seq (uy, uy, ..., u,), we are interested in
computing iy + Uz + ...+ . Such a sum is called a finite serfes. Thus a finite series is
the sum of a given finite sequence. If the sequence is (uy, uj, ..., u,), the finite series is
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s
denoted by Y., s . We consider some special finite series in the next few sections.

k=l
EXERCISE |

. Find the GP. whose initial term is 1/6, the fifth term is 81/6 and the second term is a

positive rational. "

If ab, b* and tiaresw‘s&emofank?..pmelhub.nmzb—amw

terms of a GP.

Find all sequences which are simultaneously an A.P. and a GP.

Find the G:P. with positive terms having 1 as the initial term and 256 as the ninth term

and a positive integer as comimon ratio.

. Three positive numbers form a GP. If the second term is increased by 8, the resulting
sequence is an A.P. In tm, if we increase the last term of this AP. by 64, we get a GP.
Find the progression.

. Find four numbers forming a GP. in which the third term is greater than the first by 9 and
the second term is greater than the fourth by 18.

If we subtract 2. 7,9 and 5 respectively from the four terms of a GP., we get an A.P. Find
the A.P
8. Let (uy. us. ... uy5) be an A.P. such that the arithmetic mean of u; and uys is 15. If 45, is
given to be 12, find the A.P.

»

=

”n

>

4

N 1 1 1 "
9. If (@, &°. ¢*) 15 in AP, prove that [m Hm.;—»] isin AP.
. k) is an A.P. of natural numbers with 1 <
My )isalsoan AP
11. Given two terms of an A.P. (), Uy, .., uso) namely u; = 4.9 and uy; = 10.9. find the
number of terms of the A.P. each of which is smaller than 20.
12, If a, b, ¢ are three successive terms of an A.P., prove that
a +8bc=(2b + P
13, Let (4. us . u,) be an A.P. having common difference d > 0. Suppose u? =n? £ and u,
is negative. If n = 15, find the A.P.
14. How many three-term A.P's can be obtained from 1. 230 AP
15, 1fa. b, ¢ are 1n AP, then s0 are cos A cot A/2, cos B cot B/2. cos C cot C/2.

10. Given (u,, u, ..., u,) is an A.P. and (k,, k
ky <ks<..<k,<n. prove that (i .Uy
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les are 6 and
16 Hhﬂsdawnhudm?mnndmmﬂwmg .
M“I-cusOL(l-eos.))::O‘;c?; 3 — R

; sangle are in
= ““ab::;:‘:mml-m:lu.M“J“"’““)”'M“"
show that

15.2 SUM OF AN ARITHMETIC PROGRESSION .
by an initial erm +g", a common difference d and a positive integer
An AP is defined .
L3
=1,2,.40
w=a+k-1d k=12 )
observe defined for an] natural number k, by the abov‘c equation,
ke m:f:-i:qm (uy)- l.nyg an arithmetic progression may be
iﬁm:dnz ':n‘:nﬁnim sequence. But we consider here only a finite part of such
progressions). We are interested in finding the sum ; uy where (i, Uy, ..., 4,) is an
arithmetic progression. This sum can be elegantly expressed in formula involving
only a, dand n.
Theorem 2. Consider an A.P.
a natural number 7;

defined by an initial term @, a common difference d, and
w=a+(k-1)d, k=1,2,..,0 )

Tbenmesumolmcﬁnimszriszu. is given by.

k=1

zu,”{u("—‘ﬁd}, @
k=l 2
Proof. Let us write

e 3)

k=l

If we write the same sum in the reverse order, we get

Se=Uptlgy+ ..t Uy 4)
we can arrange the sum in two ways;

S,=a+(a+d)+@+2d)+..+(a+(n- 1)d)

Sa=a+(n-Dd+(@+(n-2)d)+..+a

25, =(2a+(n-1)d)+a+(n-1)d)+..+2a+(n- hd). (5)
Hence each term in (5) is a constant 2a + (n — 1)d, and there are n such terms.

Adding these n terms we get
25, =n[2a + (n- 1)d]

_ (n=1)
or S,,-n[a+—-2 d]_ =]

REMARK. The formula (2) can also be expressed in the following form
Y 4 =) (2a+(n-1)d)

kel
= (n/2) (first term + last term)
=(n2) (uy + uy).

is the arithmetic mean of u; and u,. Thus the sum of an A.P.

The quantity L] ;"")

(U, U - Un) i 2SO equal to n times the arithmetic mean of its first and the last terms.
EXAMPLE 1. Sum the finite series
2+45+8+11+..+47+50.
SOLUTION. First we observe that the sequence (2, 5,8, 11, ..., 47, 50) is an A.P. with
common difference 3 and initial value 2. Since
Uy =uy+(n—1)d,

(4, —y) 50-2

TR
Thus the given A.P. has n = 17 terms. We can use the remark made earlier to get the

sum
- i w2 V04 +) _112+50)
k=l 2 2
EXAMPLE 2. Find the sum of all even integers between 20 and 40 (20 and 40 being
included). 5
SOLUTION. Since the sequence of even integers is an A.P. with common difference
2, the number of even integers between 20 and 40 is given by

we have (n-1= 16.

442.

40-20
n-1= 7 10.
Thus n = 11. There are 11 even integers between 20 and 40, Their sum is given by
n(20 + 40) '
s=———2 =11 x30=330.

EXAMPLE 3. An A.P. has 30 terms, the sum of the first 15 terms is equal 10 450 and
the sum of the first 20 terms is equal to 800. Find the last term of the A.P.
SOLUTION. Let us denote by d the common difference of the given A.P. Leta be the
initial term of the A.P. Then if we make use of (2) the given conditions imply that
15(a +7d) = 450
20(a + (19/2)d) = 800.
Solving these we get a = 2, d = 4. Hence the last term of the given A.P. is
up=a+30- 1Nd=2+(29x4)=118.

EXAMPLE 4. The 7th term of an A.P. is 10 and the sum of the first 7 térms is equal to
7. It the A.P. has 15 terms, find its sum.
SOLUTION. Let (4y, 4y, ... ) be the given A.P. with common difference d. Now
we know that u; = 10 and
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u|+u1+...+u1=7
But uy=uy +6d
() +47) _
and u|+..‘+u~,=7’—'2 =7 (uy +3d).
Hence we get the following system of equations for u and d;
u|+6d=10;7(u|+3d)=7.
ie., u,+6d=10:u|+sd=l.
w=-8d=3.

Since the A.P. has 15 terms, we have

15
Y, e =150 + (142)) = 15(-8+21) = 195.
ksl .
t facts we have often used in the preceding examples is that any set

One of the important ¢ 3
of consecutive terms of an A.P. is again an A.P. with the same common difference as

that of the given A.P.

. 1. Use induction to prove the formula (2) for the sum S, of an A.P.

2. Find the sum of an A.P. having 25 terms, given that its initial term is = 25 and common
difference is 3.

3. AnA.P. has common difference § and contains 51 terms. Ifits sum is 1275. find the 25th
term of the A.P. x

4. An AP, has 20 terms, its initial term is 20 and the sum is also 20. Write down the A.P.

5. Is the sequence defined by u(k) =K% k= 1,2, ... n,an A.P.?

6. Given that 24, 21, 18, 15, 12, ..., 4, is an A.P. and the sum is zero, find n and .

7. Find the sum of 81297 + 81495 + 81693 + ... + 100899.

8. Suppose (y, Uy, ..., Uy) is an A P, the sum of the first 12 terms is — 108 and the sum of the
first 24 terms is 72. If n = 30, find u,.

9. 1f (uy, ty, -... Uy) A0 (V) V3, -..0 V) ArE i ALP., SHOW that () + vy, ty + Vo, oo g + Vo) 18
alsoan A.P.

10. Find the sum of all-natural numbers with 2 digits.

11. Find the sum of all natural numbers with 3 digits and which are divisible by 3.

12. Find the sum of an A.P, given that its first term is — 10, the last term is 20, and the sum
of the 3rd, 4th and 6th terms is zero.

13. Suppose (uy, 3, ..., tyg) is an A.P. having all positive terms and common difference 2. If
the product of u and u)q is.equal to 40, find the A.P.

14. Find the sum of even integers between ~150 and 250.

15. Let (uy, g, ..., 4,) be an A.P. of positive terms with common difference d. Prove that

2 u 2n Ju} +(n=)du -

k=1
16. Find the sum of all two-digit natural numbers which are not divisible by 2 or 3.
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15.3 SUM OF A GEOMETRIC PROGRESSION

In section 15.1, we have introduced another type of sequences, viz., geometric

gressions. As in the case of an A.P,, we ha . g % 4§
f:'f.uz, s Uy) is 2 GP, then ve a finite series associated with a G.P. If

= uyt N
and we have the series ‘Z ;. In this section we find a formula for such a sum.
=1 )
Theorem 3. Let (4. uy, ..., u,) be a GP. with commoy i
L n nratio . If r # 1, then the sum of
- u(l-r"
S, = Z u = l—) %))

k=l a-n
If r = 1, then the sum is obviously, n u;.

Proof. We have
n n
Sp= Z w = z u,r"'
k=1 k=l
=u(l+r+P 4. 47",
Multiplying by r on both sides, we get
rSy=ur+ P+ 4"
=u(l+r+P+ .+ Y+ -u
=8, +uy(r—1).
This implies that
Sir=1D =wy(r-1). 3)
If r # 1, we can divide both sides of (3) by 1 - 7 to get
(a-r"
a-n'
Sp =y + uy + ... + uy (n terms)
= nu,. =]
EXAMPLE 1. Find the sum of the sequence (1, 2,4, 8, 16, ..., 1024).
SOLUTION. The given sequence is a GP. with common ratio 2. Hence, we can use
theorem 1 for finding the sum.
142+44+8+..+1024=1+2+42242%+ .. 420
10-2")
=y =-1=204
EXAMPLE 2. Suppose a GP. begins with 3, and ends with 96. It has the sum 189.
Find the number of terms in the GP.
SOLUTION. Let (uy. s, ..., ,) be the given GP. Then u; =3, u, = 96 and

i u, =189.
k-1

lilim:c the sequence is not a constant sequence, the common ratio r is different from 1.
ence

Sp=uy

Ifr=1, then
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& 1-r")
Su= 5%.’,)‘
=
3(1-r") ~189
a-n
a-r 63 @)
ie. a-n e
But we are also given
96 =y =yt =3
so that =32 ()
Combining (4) and (5), we get
1 l— 33r w6
ich gi i = ives 2! = 32 which
ch gives 1 -32r=63(1-"1), leading to r = 2. But then (_5) gives 2
::;mf: 6. Hence there are 6 terms in the given GP. The given GP.is (3,6,12,24,
48,96). )
We have found the sum of a GP. of real numbers. We note that the result is true for
a GP. of complex numbers. We use this observation in some of the problems.

1. Suppose the first term of a GP. is 5 and its last term is 3645. If the sum of the first three
terms is 65, find the GP.
2. Fortheseries 1 +22+333 4.+ 999..9 + ..., prove that, if S, is the sum to n terms then
Sterms

9(S,~Sp)=nx 1071,

We get

3. Given that the eighth term of a GP. is 2.56 and the common ratio is 2. find the sum of the .

first 16 terms. .

4. A sequence (u,) is defined by u; = 2and =3y + 1.
Find the sum uy + Uy + ... + Uy

5. The sum of an A.P. with three terms is equal t0 21. If we reduce the second term by 1 and
increase the last term by 1, we get a GP. Find these numbers.

6. The first term of a GP. is 1. The sum of the third and fifth terms is 90. Find the common
ratio of the GP.

9. Find all arithmetic progressions of natural numbers with initial term 3 and whose sum is
a three-digit number whose digits form a non constant GP.

8. Letn=2" (2 - 1) where 2 - 1 is a prime. Show that the sum of all positive divisors of
n is equal to 2n.

9. Show that for any n, the number 1+ 10% + ... + 10*" is a composite number.

10. Fo;:h’,ll values of  is the polynomial 1 + x? + x* + ... + x** 2 divisible by | +x + 24

»

15.4 SOME SPECIAL FINITE SERIES

11'1 sections 15.2 and 15.3, we have found the sums of finite series whose terms ar¢
cither A.P. or GP. Sup?ou we have been asked to find the sum of the squares of first
natural numbers. Obviously, it does not fall into any of the two kinds of series that we
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have studied in the previous sections. In order to find a method of summing this seri
we g0 back to the problem of finding the sum of the first n n:: 1 wgd'ul « (see

Chapter 2) We approach the latter problem in diff
we have the identity ferent way. For any natural number k,

k+12-KR=2%+1.

Giving values 1,2, ..., nto k, we get
2-12=21+1
32-22222+1

n

(n+1P-n*=2n+1.
Adding all these equalities, we get
(+1P=12=2(1+2+ . .+n)+n.
2142+ . 4n=m+2n+1-1-n=n(n+1)
nin+1)
3

We can adopt this technique for finding the sum of the squares of the first n natural
numbers.

Theorem 4. The sum of the squares of the first » natural numbers is given by
i @ _nnth@n+l)
k=1 6 i

(1+2+.4n)=

- 2)
Proof. We begin with the identity
k+ 1P -k =32 +3k+1 3)
which is valid for any natural number k. Giving the values 1,2, ..., n for k, we geta
system of equalities
2-1P3=3-1743-1+1
3P¥-23=3.2243.2+1

(n+1P-n=3-n*+3.n+1
Adding all these equalities, we get
+ 1P -1 =312+22+.4n)+3(0+2+.40) +1+1+..+1)

nterms
3(2 lf] =(n+ 1)3-1‘3[2 kJ_n
k=1 k=1

_3n(n2+|)_"

Hence,

= +3n+3n+1-1
=nd+(32)n? +(n2)
Y= " 2n? +3n+1)
k=1 6
_ n(n+1)(2n+1)
==
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fundamental idea in Theorem 1. White summing the 7 equalities
obtlmeflwe hl‘: “S:i . the value:"ld;?.c:.‘: 1o k, we obtained a sum o'l' the form (2° - 1) +
33_23) J gl ((n"i 1y = n?). Inthis sum, the first term in each pair cancels Tu‘:e second
. ol ive pair, resulting in an elimination of all but two terms. This ld:a- is
:;I:Int;:e m: R i In many i each term of the given series

can be written as a difference of two terms ending with the telescoping property; if

.
2 Uy is the given series, and if itis possible to write ux = Vg = Vi-i» 1 €k <n, then
=l

Tt = oy - v) + (=) H ok O = V) Ve = Ve
k=1
In such cases, the sum can be evalu:
examples.
EXAMPLE 1. Find the sum of the series 12+23+34+ 4..’+ n(n+1). .
SOLUTION. Any term of the series is of the form k(k + 1) = k* + k. Hence the sum is

given by

ated casily. We will consider these ideas in succeeding

2

_ n(n+l)[(2n+l)+l]
2 3
_ n(n+1)(n+2)

nn+1)2n+1) n(n+ 1)
S N

We can also directly employ the telescoping technique. We have the identity
R+k=13{k+1)-K -1}
Summing over k from 1 to . we get

D kk+1D =(113) ((n+ 1P = 13} = (13) {1+ 1+ .4 1)
k=)
=(1/3) {n* 4+ 3n* + 3n - n)
=(13n {n*+3n+2)
n(n+1)(n+2)
e
EXAMPLE 2. Find the sum I + 32 + 52 4 .. + (2n - 1),
SOLUTION. We can write the sum in the form
So= {12422+ 3248244 (2n - 12+ (2n)%) - (22 + 4% 4.+ (20)*)
2n n .
=Y e-aYy K
k=l k=1
_2n(2n+l)(4n+l) An(n+1)2n+1)
6 N 6
_ n(dn® -1
==
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Alternatively, we can also write the sum in the form

Si= X k=12 . % axt -
g:: D = Y (4 -k +1)

k=]
=4Zk’—4 2k+n
=] i
_a 4 D@2n+1
_47)_“(”1)”

=(3) (200 + 1) 2n+ 1)~ 6(n + 1)+ 3}
=(l3) (2(n+ 1) [2n+1-3] + 3}
=(3) {4n+ 1) (n-1) 4 3)

! n(4n* -1
B

We can adopt the same “telescoping sum” technique to find the sum of cubes of the
first n natural numbers which is given by

N .3 n(n+l)2
gfk =[ ] )

2
(See excercise at the end of this section).
EXAMPLE 3. Find the sum of the series
124+ 234+ 346+ .. +nn+1)(n+3).
SOLUTION. The general term of the series is k(k + 1) (k + 3) = &> + 4k% + 3k.
Hence the sum S, is given by

s =ik’+4 ik’+3ik
Ll 7 = e}

2
i [n(n+ l)] +4n(n+l)(2n+l) +3n(n+l)
2 6 2
_nn+) [n(n+ D, 4@n+ +3]
2 2 3
+1
= ‘n(r;_‘)l (3n% + 19n + 26}
. n(n+1)(n+2)(3n+13)
T —
EXAMPLE 4. Find the sum of the series
P24+ 3L+ D0k
SOLUTION, We consider the two cases, n odd and n even. Suppose n is odd so that
n=2m + | for some m. In this case the sum S, is given by
S, =12-2243 -84 4 2m+ 1P
(124224 344244 2m)P + Cm+ 17}
—2(224+ 42 +.+ (2m)?)
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If neven, thenn =

Thus for any n,

(Om+)@me2)@m+3) Sm(m+D)@m+1)
= - 6

6
@2m+1)(2m+2) | n(n+1)
n = 2 - 2 .
2m for some m. Hence the sum S,, is given by
5, =12-22 43— 424 .+ 2m - 1)* - 2m)?
= {12422+ R+ 824+ Qm- 12 2m))
-2{22+ 4+ _+ 2mp)

= i K-8y K
k=l k=l
o 2m(2m +1) (4m +1) N 8m(m+1)(2m+1)

-n(n+1)
=-m(7.m+l)=—2—-.

_ D"+ 1)
S

EXAMPLE 5. Find the sum of the series

1 1 1
735 357 T @n-D@n+D(@2n+3)

SQLUTION. We observe that

1 1 1 B 1 ]
(2k=1)(2k+1)(2k +3) = 4[(2&-1)(2k+|) Qk+1)(2k+3) |
Hence the sum S, is given by

1Mt 1] l[L-L}
S=ali3 3s) a3 5T

1 1 1
+7[(2:.—1)(2“1) @n+1)2n+3)

o BB
T4(13 2n+1)2n+3)|

EXERCI 4

Find the sum of the following series to n terms

L 1-542:643-T+..

1 1

2. 2-145-348-5+..

1 1 1

I —F—tr—+ 4. L+—+—+

12723 34 7 13735 57 7

s, —l—f;¢;+ 6. L+L+—l—=...
123 234 345 537 59

e Senes 497

1 3 5

 ——t——

123234 a8 22432144,
1.2 .3 h
—F st !

9. tEty 10. 34-531-1»-25,4,..

1 1

ottt ;o P N
|l4 47l 7-10l TASTRTASTY 2o

g g 4 o 2 2

13 R TRETBT R T 14, %+2—+—+...

e Wi 3557

* 135 389 sa9

16. Show that the sum of the cubes of the first » natural numbers is

L
[n(nq»l) 2
5 -

Find the sum to n terms of the following series:

17. 2:343:6+4- 11+, 18. 1:2.342.3.443.4.54
19.1-242.3243.44 . g9 41 1

i ; 258 5811 g
21 —_—

~
S

*12.3.4 2345

1
—_—
3aset
3 4 5

by
124 235 3.4.6

Find the sum 112+ 122+ 4212,
Find the sum 112122 4+ 132 2024212,
The Fibonacci sequence is defined recursively by
Fy=1,Fy=1,F,=F, +F, forn23,
Prove the following
@) Fy+Fy+ .4 Fy=Fp -1,
(b) Fi+Fy+..4Fy_=Fy,
© R4 F+.4F=F.Fp.
1 1 ! 1

@ s t——+ . ——=1- 3
RE  RE FaarFon REa
Let d,, be the sum
P T
AL B2 TN

Prove that
dy=1-(112) + (113) = (1/4) +... + (1(2n = 1)) - (112").

n
" 1
.Flndlhesumg rrepe o

Using induction prove that
< k
dt KD

n(n+1)
2An* +n+1)’
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I} 1
29. ffin=1+ E+3+...+—'- prove that

< )
3, k0 S8 = ne i - XD
k=l
30. Sum the series
L a Gn 5
T+a, (+a)(i+a) ~ (I+a)(1+a)..(1+a,)

15.5 SUMMATION OF FINITE TRIGONOMETRICAL SERIES

In this section, we shall find the sum of certain series of simple trigonometric functions
of angles which are in A.P. : ¢
EXAMPLE 1. Show that

sin o 4+ sin (0 + PB) + sin (o + 2B) + ..+ sin [0 + (n = 1)B]

= sin [a + ("—;—1) B] sin ?/xin (B2).

SOLUTION. Let Q denote the left hand side.
Then 2Q sin(B/2) = 2 sin o sin (B/2) + 2sin (o + B) sin (B/2) + 2 sin (ot + 2) sin(B/2)
2 + ...+ 25in [0+ (n - DP] sin B2
= (cos(o — Br2) - cos(ax + B/2)) + (cos (a + Br2) - cos(a + 3B/2))
+ (cos(et + 3B/2) — cos(o + 5B/2))+...

velus{o-2p]- s o- ]
= cos(e- 2) - cos[u + (,. o %}3]
oo 5 p)e(2)
sin{u + ("T—')i] sin(nB/2)

Hence Q= sin(B/2)

Remark 1. Similarly one proves that
€08 0 + coS(at + B) + cos(et + 2B) + ..+ cos[a + (n — 1)B]

cu{u + ("T_l)li sin(nP/2)

sin(B/2)

, which is what is required.

EXAMPLE 2. Sum the series
cos 0. cos(a + B) + cos(a + 2B) - cos(ct + 3B) + ...to n terms.
SOLUTION. The given ing series can be
signs. Indeed, the given series is equal to
€08 @ +¢0s (0 + B + 1) + cOs (0 + 2B + 2m) + cos (0t + 3B + 37) + ... to 1 terms

d into a series with all positive

" EXAMPLE 3.

499

n-1
a+[T) B+m) sin{n(r + B)/2)

sin((n + B)/2]
o cos[o + ((n ~ D/I2) (n+ B)lsinfn (n + B)/2]
) cos(B/2) %
Find the sum 0 n terms of the following series:
sin’u+:ln’2a+:ilr'3a+ -
Z 1
SOLUTION. We have  sin? o = 3 G sin - sin 3g),

i Ion
Hence Z,=| sin” ro. =22,..(35i“’“"i“3'")

_1 3sin 22D asin 2 g3+ ha sin 3%
% sin(a/2) sin3o/2

EXAMELE 4. Let.0.0¢ asy poihiion the circumference of a circle circumscribiy

regular polygon A, A, A;, ..., Aza + such that O lies on the arcAj A, Shaw’;::
OA;+OA; +.. OAg, = OA, + OA, + ... + 04, 142 4 1 it
SOLUTION. If P is the circle, with radius r,
OPA;. OPA,, ..., OPA,, OPAy,, |,

and ZOPA, = 6, then the angles OPA,,
are respectively

2n 4n 22n -1y 2
6.0+ 51 o A (2m)n
2+l 2n+|....9+ 2 ‘°+T+x'

Hence the lengths of OA,, 04,, OA;, ... are resbecu'vely

sin © . (8. = . (8 2m
2rsin = 2 &= 2 Sgpae® |
2 ISIH[2+2n+l} ’sm[z 241" ¥

Therefore (172r) (OA| + OAy+ OAs +...+ OAy, , 1)

.8 . (8, 2n 0,  4n
=sin —+ = —— in | —
;mz sm(2+2n+IJ+sm[2+2’.+l}“to(n4-l)(erms
wn] @4 20 ] (neim
2n+1

and (12r) (OA; + OAy + OAg +..+ OAy,) .
=si 2+ L2 i g+_3: +sin g+___5n +...to nterms
B CRETPUY Al PRETITY bl PRPTPTY b
sinf @ 4+ ™| gin T '
2 2n+l) 20+l L

sin -
2n+1

M sin PV e have the desired inequality.

n+1 2n+1"

Since si
n 2
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Find the sum of the following series ((1) - (6))

1. sin® + sin 36 + sin 56 + ... to n terms. ®

$in® + sin?3 + sin?5 + .. to n terms.

050 + c0s*30 + os*50 + ... to n terms.

sino sin30L + sin30 sinSec + sinSa sin7at + ... to n lerms.

5. sinof cos2q + sin20t cos30t + sin30t cos4at + ... to 1 lerms.

6. c0s?0 + cos}( + @) + cos¥(B + 2¢) + ... to n terms.

7. Suppose A; A; . .. A, is a regular polygon inscribed in a circle centre O, mdiu“ a,and P
any pointonarc Ay A,. 1f perpendiculars py, pa. .-, Pa ¢ drawn from P on the sides of the
polygon, then prove that

NS

» 8
@Y, A=3™

n 3 S 3
==na
® 2,3
8. Show that
sing + sin30 + s 5a + .. +sin(2n — Do 50 GReR)
€S @ + €083 + €O 5a +..+c0s(2n = Dax
9. Show that
5in@ + sin20 +sin30 + n terms —(m("“)a
c0s6 + €020+ 0530 + .. 10 n lerms P

10. Show that the sum of the sines (cosines) of n angles in A.P. with common difference
equal to an integral multiple of 28/n is zero.

1. 1fe= %.lhenshowlhncose+cosze+cos40+co‘seand

c0s 30 + cos 56 + cos 6 + cos 78 are the roots of 2% + x -2 =0.
12. Sum to n terms:

n-4 -6
sin®+sin——0 4+sin ——0+.. .
n-2 n-2

15.6 SUMMATION INVOLVING BINOMIAL COEFFICIENTS
Recall, from Chapter 9 the Binomial Theorem. We shall start this section by giving &
proof by Mathematical Induction of the Theorem.
Theorem 5. (Binomial Theorem for a Positive Integral Index)
For any positive integer n and real (or complex)x,

(l+xY‘=2(:]X‘ "
k=0

Proof. We prove the theorem by induction on n. For n =2, we have (1 + )P=1+2
+ x% 50 that (1) is true. Suppose the expansion (1) is true for some positive integer M

a +xy-=2(':]x‘.
k=0

501
Then, we have,

0™ =L 42) (14 gy
i a
(J:‘,z [':)xuu‘

=(+x) [.i‘; (’:J*']=g =

w0 ()
o (7)e ot [ e () .

m+1
k ] (k - I] ¥ ( by Example 8. Chapter 9, Section 2.

o ()1l

) m+1
Hence we can write now

m+1 m+1 m+1
‘,t‘,.n.,:( ]+( ]”[ ]xz+ mal) L (mel)
0 1 2 e b e X+ Wl X
& (m+1
=0 k
This is precisely the expansion (1) for n = m + 1. Thus, we have proved that

whenever (1) is true for n = m, it is also true forn = m + 1. By induction, (1) is valid
for all n in N.

Thus for any @ and b and natural number n we have
S (M e (M) L
i Bt _ nekpk
(a + by 'E,(k]a ‘é[k]a L5 a
It is possible 1o find an expansion for (1 + x)® for any real number o with the

condition that lvi < 1. However, it involves an infinite series and brings in questions
about its convergence, We shall not pursue it further.

The Binomial Theorem can be used to find the sum of certain finite series involving

Hence,

. n
binomial coefficients L“ ] Recall Examples 4, 5, 6 of Section 9.3 of Chapter 9.

ENXAMPLE 1. Sum the series
ay ,(nY Y
(0) +(,] +4..+(n) J
5 (),
(|+1)"=Z (k]" .
=0

[:] - (,,fk]-

SO 10N, We have the identity,

But we also have
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ion can also be written in the form (Recall the different

that the binomial expansi
:mmns of the Binomial Theorem from Chapter 9.3)

" " LI [T (g PP 3
oo
‘We multiply both the expansions for (1 +x)* and collect the coefficients of x". We

observe appears i uct when we multiply a term involving x* in the first
expmsi;:’:v:h aterm :::fﬁ:d - in the second expansion. Hence for each k, we

B n n 3 5
get ﬂ\e coefficient [k) (n -k) for x* in the product of two es.(pansmns.

aesrasr= [ CC)

+ terms involving other powers of x.

2 2 2
n n n i
(l+x)h=[[0) +(‘] +...+(n] ]x
+ terms with other power of x.

But, expanding (1 +x)*, we get

2n) (2n 2 2n) ,,
(l+x)"=[0]+[l]x+“.+(n]x +'"+[2n)x s

Comparing the coefficients of x" in two expansions for (1 + )P, we get

6]+ () )

EXAMPLE 2. Find the sum of the cubes of the first n natural numbers. We have
already noted in Section 15.4 that the sum is equal 1o

[n(n +1 )]’
|

SOLUTION. Here we prove this using some properties of the binomial coefficients.
For any natural number k, we write .

k k k
o)1) .
where a, b and c are constants to be determined. Now (3) can be written as

k(k=1) (k- .
PRI ) 2( 2)+b—“"2 D, ck

) . = (@l6)® + (- al2) + (b)) + ((al3) - (bI2) + C)k.
Syoe (3) is an identity in k comparing the coefficients of various powers of k on both
sides, we get
al6 =1, (~a2) +(bl2) =0, (a/3) - (b/2) + c = 0.
Solving for g, band ¢, we get
: a=6b=6andc=1.

503

Thus we get an identity

it (:)*6(:]’(:) @

We observe that (4) reduces to

-
o)

and (4) is valid for k > 3. Now, giving the values k= 1,2, ..., nin (4), we get equalities

Adding these, we get

rereeae(Js5(0)5()
o S0

Q)

However, for any positive integers n and k

1 )-=(-(),

(See exercises at the end of this section)

> [k n+l

H -

lence, we get g; (3) = [" _3]- ©

Similarly, we can prove that
i[k] n+l] 7
=\2)%n-2) i
"ok " n(n+1)(n+l

Moreover ( )= k= ( ]
()22

Thus the desired sum can be reduced to
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3 n+l n+l n+l
R R
n+l n+l n+1
Yo 37
A further simplification gives
i,‘:_[n(nn)]’
= L2 1
EXAMPLE 4. Sum the series

1(n\, 1(n I (n
& E(I)T(Z]*“* (n+l)(n]'

SOLUTION. We begin with the observation that

n+1 » (n+1)!
k+1) (n- k)'(kﬂ)!
n+1
T k+1 (n k)'k'
for any positive integer k < n. If S, is the sum of he given series, then
o 1 (n I n+lfn
e nes
T & k+1\k n+l§k+l k
1 <= (n+l 1| (n+1
=— P -1
n+l‘_o(k+l)=n+l[g",( k ) ]
1 e
=—[2" -
n+l[ 1

L

]

e

EXERCISE 15.6

- Prove that for any positive integers n and k,

BTt

Sum the following series;

12() [ ]+ 4 (n— l)n(:]
(6 AD) o))
*2’[ )+3’( ]+ 4n [ J

1

(2
= R

()00 e)

®)

9.

o

17.
18.

19.

[Faume Semes 505

S
(oln () |
(3) 2( *{) (= l)"(n+])()
(3)+ +ottn= 2

[’;J(:J‘ ,.’_',J[:)fofr<n
2, ., L)

i
3

O 0
P (';]2*2('2']2+.,_,,,(:] 3 «(,.2"_\_.;.),;

() -(:r[{:g‘*-»»(-xr(:r

n!

—— ifniseven
[(nr2!7

. Find the sum of the products of (;} [';} (:] taken two at a time.

Find the sum

1 1 1

Wm0t 2-2 ' oo

Find the sum of the fourth powers of the first n natural numbers.
If(1 4 x4+ = Cy+ Crx + Gy 4.4 Cop*
prove that
() Cy=Cypyfor0Sks2n
) G- +CG-.+CL=C,
(iil) Co+Cr+ Cy+. 4 Cop=1+C+Cy+ .4 Cppy.
Sum the series

()-3G)36)-+3(a)
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the sum of all positive divisors of n. Prove that
. For vewga'n.le(o(n)mw
- @ =D -0 T )]
o) =" 1) (P2~ D--Pm =D
- is the prime decomposition of n.

where n=pl py P

z P«mypoanvemgern.pmvethﬁ
+1

3n
T P 2 B
(n+l)(2n+l) ;l (n+D)@2n+1) an(n+)(2n+1)°

3. Define a sequence () by
u,,:l,u,:lu,_,+lfofk>0.

Find a closed expression for u,.
4. Define a sequence (i) by
k+
uo=0.un-[ T
= nn+3)
Prove that == -
5. Find the sum of all the products taken two at a time of the first n natural numbers.
6. Fndmcsumoralmnpmduuukznlwcuaumeofmenumbusl 4,7...3n-2).
7. Find the sum of the series
n_ n-1 1
— et ————
123 234 n(n+1)(n+2)

E K- k)(:)z =t (b'n" 2).

k=1
9. Prove the identity

CHOCHECT ) =
10. Z"')'(,, k](’:] [( () oo

k=0 if nisodd
1L If(1+ 204 28 = Co + Cpx, 6o +...4 Cop™,

prove that
n-1 n-1
Cy=4n?-22-7p [l¢3( 2 )+...+(2n-l)("_]J]

12. If nis a positive multiple of 6, show that

@ (',']—3(’3']”’ (;J‘ =0
® ('.']'%(;)“;lr(;)’ -0,

13. For any integer k > 1 and n 2 1, prove that #* is a sum of n consecutive odd numbers.

2]:4,_, +(1/k) fork>0.
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14. Prove the identity

c,,s(“( ]eos20+(z]msw¢...+(n:l]euno+co.(n+|)o

=2 cor @) cos (1320

S Y | )
-
l+4 9+|6+"*;T<If°'lnynal.

10

16. Find constant @y, @y, @, ..., ajp such that cos'0 9 = Z 4y cos 0.
k=l

17. Prove that

o (-6)-Gr
o (o-G)-()

320 T 2oy

19. Find the sum

é 2
%(2-) ()ro-or
k=0

20. The cubic x* + ax® + bx + ¢ has three distinct zeros in GP. Suppose the reciprocals of

these zeros are in A.P. Prove that

2b% + 3ac = 0.

21. Find all arithmetic progressions of natural numbers such that the sum of n terms of A.P.

is a perfect square for all natural numbers n.
22. If nis a positive integer, then

n
Z,.. rlz,x =cot x-cot 2" x.

. a, be n real numbers and a real function f be defined by

23. Letay, as, ay,

1 1
fix)=cos (a; +x) + 3 cos(a+x)+..+ P cos(a, + x), for all real x. If fix;) = 0 and

fixa) = 0 for some real x;, x,, show that x; - x, = mn for some integer m.
24. Find the minimum integral value of n for which
Sin x) + i Xy # ...+ SiNG, = 0,

and sinx, +2sinxy + ... +nsinx, =0
simultaneously hold good for some real Xy, X, ... %a- B
25. Show that

i cos(2rm/(2n + 1) = 172.
r=0
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26. Evaluate
(a) ,E: sin [r/2 (2n + D
a-l
®) X sin (rr/2n].

27. 1f ay, @3, ..., a, are positive numbers in A.P. prove that
q+gT
2 .

(@ a, % <aya;...a, <(

1 6 De Mowre’s Theorewm AND
ITS APPLICATIONS
—— s AppicaTions

16.1 De MOIVRE’S THEOREM

Recall from Chapter 1 that cos 6 + i sin @ is complex number whose argument is 6.
The modulus of this number is (cos20 + i sin? 8)"2 which js 1. S0 the number lies on
the unit circle Izl = 1. The Theorem of De Moivre proved in 1730 A.D. tells us that the
powers of a complex number cos 8 + i sin § js again a complex number of the same
form namely, cos ¢ + i sin ¢ where ¢ is only a suitable multiple of 6. This leads to the

1 i i ical i ion. When a complex number on the unit
it is again a number on the same unit
this. It says raising a complex number of

2 2
circle is raised to a power say, the nth power,
circle. De Moivre's Theorem says more than

modulus 1 to the nth power simply multiplies the by n. The ipulatory
uses of this fact are many. We shall see some of the easy ones in this chapter.
Theareun 1L If n is an integer, positive or negative,

(cos B + i sin 8)" = cos n6 + i sin n®
and if n is a rational fraction, cos #6 + i sin 8 is one of the values of
(cos © +i sin 0)".
Proot In order to prove the Theorem we first note an elementary Lemma.
LS THRET (cos @ + i sin ) (cos B + i sin B)
= (cos e cos B - sin & sin B) + i (sin & cos B + cos a sin B)
= cos(at + )+ i sin(a + B).
Consequently, (cos @ + i sin @) (cos B + i sin B) (cos y+ i sin y)
= [cos(ct + P) + i sin(ct + B)] [cos Y+ i siny]
=cos(@+P+y) +isin@a+P+7)
and so on. This can be extended to any number of quantities by induction. Now let us
take the main theorem.
€ Let n be a positive integer. Consider n quantities &, 0, ..., O
By Lemma, we have, »
(cOs 0t + i sin @) (c0s @tz + i 8in 0) .. (COS Oy + i 8in ;)
= COS( + O ... + Oy) + SN0 +0p + oo + Q).

Putting 0 =0y =... 0y =6, .
e get (cos O + i sin 8)(cos O + i sin B) ... n times
509
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26. Evaluate
@ ,;-| sin (2 21+ Dl

n-l
®) & sin (o2l
21. 1f i :z a, are positive numbers in A.P. prove that
. 1f ay, @3 e

(CHAR-—

6 De Moivre’s THEOREM AND
ITS APPLICATIONS

16.1 De MOIVRE’S THEOREM

Recall from Chapter 1 that cos 8 + i sin 8 is a complex number whose argument is 6.
The modulus of this number is (cos? 8 + i sin? 8)' which is 1. So the number lies on
the unit circle Iz = 1. The Theorem of De Moivre proved in 1730 A.D. tells us that the
powers of a complex number cos 8 + i sin 8 is again a complex number of the same
form namely. cos ¢ + i sin ¢ where ¢ is only a suitable multiple of 6. This leads to the
following i ing ical interp ion. When a plex number on the unit
circle is raised to a power say. the nth power, it is again a number on the same unit
circle. De Moivre’s Theorem says more than this. It says raising a complex number of

modulus 1 to the nth power simply iplies the by n. The ip Y
uses of this fact are many. We shall see some of the easy ones in this chapter.
Theore o L. If n is an integer, positive or negative,

(cos B + i sin 8)" = cos n® + i sin n6
and if n is a rational fraction, cos n8 + i sin n8 is one of the values of
(cos 8+ sin 6)".
Proct In order to prove the Theorem we first note an elementary Lemma.
| " (cos & + i sin o) (cos B + i sin B)
= (cos & cos B - sin c sin ) + i (sin & cos P + cos asin B)
= cos(a + B)+ i sin(a + B).
Consequently, (cos ot + i sin @) (cos B + i sin B) (cos Y+ i siny)
= [cos(a + B) + i sin(ot + B)] [cos y + i sin y]
=cos(a+B+y +isinfa+P+7y)
and so on. This can be extended to any number of quantities by induction. Now let us
take the main theorem.
{ Let n be a positive integer. Consider n quantities @, @, ..., O.
By Lemma, we have,
(cos oty + i sin @) (€Os O + i Sin @) ... (COS O, + i sin @)
= COS(0y + O +... + @) + i SIN(A + 0 + .o + Q).
A =..0,=0,
we get (cos O + i sin 8)(cos O + i sin 6) ... n times
509

Putting o,
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=c0s(0 + 0 + ... ntimes) + i sin(8 + 6 + ... n times).
Hence (cos 8 + i sin 8)" = cos n6 + i sin n6. )
Case 2. Let n be a negative integer and equal to - m, say, where m is a positive integer,
(cos 0 + i sin 8)" = (cos 6 + i sin )™
1 . 1

= c0s0+1sin0)  (cosmd +isinmb) by Case 1.
cos m — i sin m0
= (cos m® + i sin mB)(cos mB — i sin mB)
cos m8 ~ i sin mo

= Cos® m@+sin’ m

= cos m8 ~ i sin mO = cos (-~ mB) + i sin (- mO)

=cos nB + i sin n6,
Case 3. Let n be a rational fraction and equal to p/g where p and g are integers.
By Cases I and 2, we have,

[cos (p/q)® + i sin(p/q)B)?

= [cos (¢.(p/g)8) + i sin (q.(/9)0))

=cos pB + i sin p@

= (cos O + i sin 8 again, since p is an integer.
Thus, . (cos(p/q)® + i sin(p/q)®) is one of the gth roots of

(cos 8 + i sin B
that is, one of the value of

((cos @ + i sin BY)a
iie., of (cos B + i sin B4,
which means that

cos 0 + i sin 6 is a value of (cos 0 + i sin 8)". Q
Remark Using the notation of cis 8 for cos § + i sin 8, the result of the theorem can be
written as

cis n0 = one of the values of (cis 0)".
The result of the lemma will be
CisQ) . CiSQL ... iSOy, = Cis (O + 0 + ... + ).
€0s 8 — i sin 8 = cos (- 8) + i sin (- 0)
=cis (- 8) = [cis 0]
FoR [
. cosO+isin®
Thus the conjugate numbers cos 6 + i sin 0 and cos 0 - i sin 0 are reciprocals of each
other. This is also shown by the working:
(cos 0 + i sin B) (cos 6 - i sin 0)

=cos? @ - (i sin 6)

=cos?@+sin? 0 =1.
Remark If z=cos @ +isin? @
then (Vz) =cos B ~isin .

Corollary

[1De Mone's Tieoneu s m Aowicig | s11

so that 2+ (V2) =2 cos

andzo (=2
De Moivre’s theorem will now give 2-(2)=2ising,
z“"“ﬂeﬁﬁnw
and (]/1)"=eosn0_,'“-nne_
so that 2“+(VZ)'=2mne
and 2= (112" = 2i sin g,

These results will be of immense yse in what follows,

EXAMPLE 1. ffx=ciso, y = cis B, prove thar
("A”) = (/™) = 2 i singmar — ).

SOLUTION. We have, by De Moivre's theorem

Xh=cisma and yr = cis np,
Therefore

cisnB  cisma
= cis ma. cis (- nB) - cis np . cis (- ma)
= cis(mat - nB) - cis(np - ma)
=cis 8 - cis (- 0) where 8 = ma - nf§
=2isin 0=2sin (ma - nf).
D.‘ AMPLE 2. Show that the real and imaginary part of (1 + xiy',
nis a positive integer. will be equal if

X =tan ((4r + 1)w/4n),
r being zero or any integer.

SOLUTION, (I + iy = [\/u +2) cise]'

1 x
Wi cos § = — inB=
here cos e and slne-m
So (1 + 2" = (1 + )™ cis n.
Hence real part =(1 + )" cos n®
and imaginary part

(FIy") = () = cisma  cisnf

where x is real and

= (1 + )" sin n0 = (1 + 2 cos((/2)r — nb).
These are equal if
cos nB = cos ((V2)r -nB).
o n® = 2rn 1 ((122)x - n6).
The lower sign gives no value for 6.
- n® =2rx + (1/2)n - n6,

X (4r+x g (4r+ )
le., 0 = —T—, Le, 9=""
(Ar+hr
x=tan 6 =tan ~an *

EXAMPLE 3. Find the sum of the finite series
cos 0 + cos 20 + cos 30 + ... + cos n@ for 0 <6 < 2x.
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mwwg0+isin9.

the complex 0!
SOLUTION. Consider the k@ +isink8,

(cos 0+ sin 8) =08 )
weh"hmetk.lfwepmzswsennnomauko Real part of z*.
s the form

Hence we can write the given series in
Su =cos@+cos20 + ... +cos nf

_Ru]pmof(z-fz‘-* 32
=Re(l+z+..2%=1).

1f 0 < <27, then z # 1. Hence, we get

_— ww&t'] I
Thus = cos@+isinB-1

) l(me_,)_,mellm(ﬁue- 1+ sin(n + nel] i
[(cos®— 1) +isinO)[(cos@—1) — i sin O]

(eose—l)(cos(n+l)9—l)+sm05m(n+I)e i
(cos8-1)° +sin’ @

cosacos(n+l)6+smesm(n+l)0 cox(n+l]64u)\8+l i

(cos8-1)? +sin’ O
cosn—costn + 18— cosB+1
- 2(1 - cos 8)
cosnf-cos(n+1)0 1
= 201-cos6) 2’
This can be further simplified to give

Zsm(n+z)esm(612) \ .\in[n+%}0

|

A 4sin’ (0/2) T2 2sin(02) 2

EXERCISE 16.1

Simplif (eotsa+um5u)’(m|2u+mn2u)
l‘m’ly(cocm umMY'(aoﬂaﬂstu)

1+ sin(1/8)x +i cos(1/ 8)m
2 Prove that - 17 Bx -~ Fco1 /8% =~ |
¢ Find the modulus and amplitude of

[(i = (cos © - i sin 8))/(1 + cos @ - i sin 6))’.

L 513

4. lfsma+slnp+sm'y-0-m¢+mﬂm7

prove that
cos Sa*cosSB‘cuSy-Scoc(uoﬂi-w
and un3m¢m3p+xin31-.’ism(u+901)

5. Show that

Z sin(2k - 1)g = 308 sin? nf
T $in@

6. Letn=2m where m is an odd i integer greater than |.

Let z = cis(2m)n. Show that

1
(=g =12+ e

7. Find the sums

(a) sin©+5sin 20+ ... +sinnd

(b) cos’ O +cos? 20 + ... + cos? nf

(¢) sin @ +asin (8 +8) +a’ sin (8 +28) + ... + &' sin (8 + (n - 1)3).

1
8 Ifx+ % =2 cos 6, prove that

1
X"+ = =2cos nb.
X

16.2 " ROOTS OF A COMPLEX NUMBER

Suppose z = rcis 0. Let an n™ root of this be p cis ¢.

Then (pcis¢)' =rcisB. ie,p cisnd=rcis.
Hence pi=rie,p=r"andng=0+2km k=0,21,£2,..
s 0+ 2kn
0 ¢= —n
Thus the n'™ roots of r cis 8 are
0+ 2kn ; 2
i cis R k being zero or any integer.

Actually there are only n n" roots of z, the others being repetitions. We shall illustrate
this by taking specific examples.
EXAMPLE 1. Find all the 5% roots of 1 +i.
SOLUTION. Now | +i = /2 (cos 45° + i sin 45°)
= V2 cis(/4).
(14 i)' = 2V10cis((/4)/5 + (2kn5))
= 2110 ¢is((r/20) + (2k1/S)), k=0,1,2,3,4.
(14 i)VS = 2Y0cis((/20) + (2km/5)),  k=0.1,2,3,4. O}
Writing these in detail, we have the roots as
2110 Gis(r/20) = tg, 2110 cis((W/20) + (21/5)) = 0y
2110 i5((1/20) + (41U5)) = Wy, 2V10cis((/20) + (67/5)) = 03
210 cis((r/20) + (87/5)) = @,
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The fact that these are the only roots is shown by continuing with the substitution of
the values k =5, 6, etc., in (*) we see that
20 cis((r/20) + (10%/5)) = 20 cis(x/20) = &g
20 cis(1/20) + (1205)) = 210 cis((%/20) + 20/5)) = &,
mdsoon.msvedon‘!gunyncwm(s.ifwgobcyondk=4.Nordowegagny
new roots if we substitute k=-1,~2,-3 ...
EXAMPLE 2. Find all the n* roots of unity.
z=cis 0 = cis 2kn
SOLUTION. Here, ' =cis(2ke/n), k=0,1,2,3,..n-1.
They are cis 0, cis(2n/n), cis(4/n), ..., cis(2(n — 1)=/n).
Write @ for cis (21/n).
With this notation the n n® roots of unity are 1, @, @, ..., @™
EXAMPLE 3. Prove that the sum of the n n* roots of unity is zero.
SOLUTION. Use the following fact from Higher Algebra (See Note below.):
If the roots of
f)=ax" +apx™ ' + .. +a,=0

are &y, 0, ..., O, then

a; + 0 + ... + &, =—(ay/ag)
and 0,...0, = (- 1)* (a,/ag).
‘Thus since the n™ roots of unity are the roots of the equation

xX-1=0,
wehave the sumof theroots =1+ @+ @ + ... + ™!
coefficient of x*'

=~ coefficientof x* ~©
and the product of the roots

= @)X 4n-1) = (ofntn-12)

coefficient of x° _ (=1)"(-1)

=D Cetficient of x* 1
e
T
hpurﬁudzrifmisacubemofunityﬂum:cos&ﬂ})m
1+0+@?=0
and low? =@ =(-1y=1.

Note. This is a generalisation of the familiar result for quadratic equations, namely  If & and B
are the roots of ax’+ bx + ¢ = 0 then
a+ﬂ=-£ and af=S<.
5 a a
EXAMPLE 4. On the unit circle in the Argand Diagram represent
« (0) The three cube roots of unity.
(ii) The five fifth roots of unity.

 DeMowne's Treone o s A |

SOLUTION. Note that the p pt .
of n sides inscribed in the yniy ci::o“ i

515

1y form the vertices of
1e. See Figures 16,1 ang 16,0, © 512 POIYBon

DB

Fig. 16.1 Fig. 162
EXAMPLE 5. Expand cos 68 in terms of powers of cos 6.

cos 68 = Real part of cos 60 + i sin 60,
= Real part of (cos @ + i sin ).
SOLLmON. Expanding the expression (cos 8 +isin 8)° by Binomial theorem we get

cos"G»Gcos’O.isin6+(g]cos‘BAizsin’9+(6] cos® 8. i sin® @
3 .
2

+(j]cosze.t‘sin‘0+(:JoosB.f'sin’B-n‘sin‘O.
#== 1. =~i,i*=+ 1, ctc., the required Real part
=cos°9—[:) cos‘Osinzed-(i] cos? 0 sin* © - sin® §
=c0s® 0 -.15 cos* 0 (1 - cos? 0) + 15 cos? B(1 - cos? B)?
~(1-cos?0)

Since

=32cos* 8 -48 cos* 8+ 16 cos? - 1.

EXERCISE 16.2

1. Find all the values of

@ (~14v5)"

®) (1+9"?

© (-3 -,)m (d) 648

2. If 1, @, @ are the cube roots of unity, prove that
8 1. 1 ..}

Tl x-1 -1 -1

3. If @ = cis (2n/n) prove that

1+ @ + %+ ., + @*"¥is n or zero according as p is an integer which is or which is not
amultiple of n.



516 iimiE e T or Pre-Collsoe Manieuncs |

& 16 o= cisT) and fix) = Ag + 1 Eparyx” thea prove that
fix) + flow) + o) + .+ fobx)
= T(Ag+ A" + A1x')-
5. Expmdsin(»einlemsofpowersol'sine.
6. Expand cos 58 in terms of powers of cos 6.
7. Expand sin 70 in terms of powers of sin 6.
8. Prove that
€08 (O + O + .. + Ofp)
=oosu,cos64...cosa.,,[1-Sz—s.—sb+.“1
and  sin (04 + O + ... + O)
=c0s 0 COS%...COS%[S]'S;*SS‘S7 54
where Sy =Ztan 0y, S = I tan o tan oy,
Sy=Xtan @ tan 0, tan & and s on.

Hence prove that
n n\; (m)s_
G)-GpeCr--
NPV LU .l 7 AR
L - n 2+ n Vi
P+
where 1=tan 6.
PROBLE
1. Prove that
(@ ’::: =256 sis 0 - 576 5in® 8 + 432 sin* 0 — 120 5in? 0 + 9

(b) 128 cos® 8 sin® @ = 6 sin 20 — 2 sin 46 — 2 sin 60 + sin 30
2. fa=cosa—isinaardb=cosP-isinp

prove that
(a+b)(1-ab) _(sina +sinf)
(a-b)(1+ab) (sinc—sinp)
3. Sum of n terms of following:
(a) tan O sec 20 +tan 20 sec? O + ... + tan 2! B sec 2O
(b) cos &+ 2 cos 20t + 22 cos 30t + ... 1o n terms.
4. Prove that
3sinx-sindx 3sin3x -sin3'x
cos 3x 3cos3°x
oanel_oan
s 3 L-ans)
5. From the equation whose roots are

mlﬂ.mlﬂ,milmlﬂ
9 9 9 9

Miscellaneous Problems page 518
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and hence prove

R
(a) 8cos ° eos?m_ =1

=8cos Eeosz_'m‘_"
9 9"
2, adn

4 4
e gt oy,

Hint:
i = cis 2K+ ¥
y cls*9 k=0,1,2,...8,
9
y +1
» . (2k+Dn
then e 0 has roots cis 9 k=0,..35.8
1
Put _v+y=2x4
6. Solve for x, y, z:
X+y+z=a
X+oy+eiz=h

Xy +az=c
where @ is a cube root of unity.
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MisCELLANEOUS PROBLEMS

1. Let o and B be the roots of

24 =2c0s@+isin®) DR
z

i i argument and lo—il=1B—il.
Show that o + i and B + i have the same "
::;FmdzhelocusofdwmotsuandﬂinCasovmesfromOto2n,
Z.Supposeu,ﬂ.ymdﬁmml numbers such that

a+p+y+5=a’+b7+y7+57=0
Prove that
(o +P)a+ e+ =0
3. Let 0:and p be the zeros of x* ~6x +1=0. Show that o"
1 and it is not divisible by 5.
4. A square matrix A is said to be orthogonal if AAT =

+ " is an integer for any

1. Show that the following

matrices are orthogonal:
5 cos® -sin® 0
@ (°_°’ i °](b) sin® cos8 0
sin® cos® 0 0 1
(c) The n x n matrix obtained by interchanging any two rows of the identity
matrix /,.
cos® sin® 0)(x) (x
5. Show that, if sin® cos® 0|\ y|=|y
0 0 1)z
then P+yp+2=x2+y 4 2
6. Find all polynomials p(x) such that
P0) = (p(x)%

7. Let ay, ay, a3, aq and b be real numbers such that
4 4
b+ Y a =852+ Y al =16

k=1 k=1
Find the maximum value of b.
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8. For any natural number n prove that

2«/;~2<i :17<2./;_1_

k=l
9, Factorize:
(@) E(bc - a*)(ca~ b?) (b) Z(be - aM¥(ca - b2,
10. If tan A and tan B are the roots of ax? + bx + ¢ = 0, evaluate
asin’(A +B) +bsin (A +B) cos (A + B) + c cos? (A + B).
11. Show that there exists a convex hexagon in the plane such that
(i) all its interior angles are equal;
(ii) the lengths of its sides are 1,2, 3,4, 5, 6 in some order.
12. Find the remainder when 19%2 is divided by 92.
13. Determine all pairs (m, n) of positive integers m, n for which 2™ + 3" is a perfect
square.
14. Find the number of positive integers n < 1991 such that 6 is a factor of n* + 3n + 2.
15. Let a, b, ¢ be three real numbers with0<a<1,0<b<1,0<c<landa+b
+ ¢ = 2. Prove that
a b ¢
l—al-b : 28.

16. Solve for real numbers x, y, z:

x+y-z=4
2-P+2=-4
xyz=6.

17. Six generals propose locking a safe containing top secret with a number of different
locks. Each general will be given keys to certain of these locks. How many locks
are required and how many keys must each general have so that, unless at least
four generals are present, the safe cannot be opened?

18. For any positive integer n, let s(n) denote the number of ordered pairs (x, y) of

| P L
positive integers for which - ¥ 3 p (Forinstance, 5(2) =3). Determine the set

of positive integers n for which s(n) = 5.

19. If
aq 1 00 »
-1 a 10
0 -1a 10 -
D, = &
% 00 - - --la,

Show that Dy =Dy + Dpoa:
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i i <oht 20, each of the weights being a positive
n M "é“;':'nml; :':l,,,::ﬁhs exceeds 10, prove ‘l;h‘l the ten objects can
ivided i that balance each other in weight.
B e O i o b, are two sets of real numbers such that either both
decreasi

vy G and by, by
e in o boh e decreasin.Pove
n n 2
{z ”k][z b,] < "Z agb -
kel k=1 kel
< is known as Chebyshev’s inequality)-
2. g?;;::,h ) and Qy= (x5, yp) with O as origi.n and OPRQ is the Ogm with
OP, 0Q as adjacent sides, then show that
X,
Area of the Ogm OPRQ is x; e
(B)If A = (. Yol P = (51, Y1) & Q = (x5, y) then show that the area of the
parallelogram with adjacent sides AP, AQis
xn=% n-Y \
X=X 2"Yo
(c) Generalise this result to three dimensions.
23. Find all integers n such that
nd+(n+Dx+(n+2)=0
has only rational roots.
24. Find all integers n and @ such that £ — £ + 1 divides "+ 1 + d.
25. Show that there is no polynomial p(x) in Z[x) for which p(k) is a prime for all
integers k 20.
26.LetA=1[1,2,3,... 100} and B be a subset of A having 48 elements. Show that
B has two distinct elements x and y whose sum is divisible by 11.
27.1f a, b, ¢, d are four nonnegative real numbers anda + b +c + d=1.Show thatab
+bc+cd< /4
28. Given a triangle ABC, define

x:(m(";‘f)m
2

=15

w2

u

y

RO Rw N>

[

2
Prove that x + y + z+ xyz=0.
29. Show that there do not exist four distinct real numbers a, b, ¢, d such that
P+bP=+d
and a+b=c+d.
30. Determine the largest number in the infinite sequence:

1232,33,..4n ’

—I o 521

31. Prove that if a, b, ¢ are odd inte;
imber 488 150t. gers then ax? + bx + ¢ = 0 cannot have a rational

. Let P be any point inside a tri
32 S A D)[ PE"’F i :yfnlitv:l:& If AP, BP and CP meet the sides BC,
PD + PE + PF <max (a, b, c).
3, Construct a quadrilateral which i : . .
’ angles and a pair of opposn:l:l};elss anroe(:quuz]gm MRt
34, Find all polynomials p(x) such that
ap(x = 1) = (x - 15)p(x).
35. Find all natural numbers n for which the product of its digits is n? - 13n - 25
. Let A(x, y) be the numeri i - :
* and y = (y1, y2). Show l)\c;ll wohmmglewh‘ose e
Alx, y) = Ay, x):
Alax, y) =l Alx, y);
Alx+ 0y, y) = Alx, y).
37. With the notation of Qn. 36 above,
(@) Ifx=(1,2).y=(=1,4),z=(1,-3) show that A(x + y, 2) = A(x, 2) + A(y. 2)
(b) If x=(2,4), y=(2, 1), 2= (3. 5) show that A(x + y, z) = - A(x, 2) + A(Y, 2);
(© Ifx=(2,5),y=(-1,2),z=(- 1, 3) show that A(x + y, 2) = A(x, ) - A%, 2).
38: If A’(x. y) be defined as the (signed) area of the triangle whose vertices are (0, 0),
x=(x;, %) and y = (yy, y2) show that
Nx+y, )= )+48 52
Ax y)=- A x)
Ao, y) = aA'(x, y)
and Ax+ayy)=Axy)
Calculate A’(x + , z) in all three cases (a), (b) and (c) of Qn. 37 and contrast with
the behaviour of A(x + y; z). Can you explain why A(x + . z) has three different
expressions in (a) (b) (c) of Qn. 37?
. Show that
S sin' asin (B - ) = - sin (B~7) sin (- &) sin (&t~ B) x sin (a+ +7y).
40. Find the value of the positive integer n for which the equation

I (x+i=Ix+D)=10n.

b

41. Determine the set of all positive integers n for which 31 divides 2% +1.

4
4.

. Prove that 32 does not divide 2% + 1 for any positive integer n.
. Show that if R and r are the ci dius and the in-radius of a
angled triangle, and / be the greatest altitude then
R+rsh
44, A real number o is said to be algebratic if o is a zero of a polynomial in Z1 x |
e.g.. |2 is algebraic since it satisfies x* ~ 2= 0. If & and B are algebraic show .
that o + B and af are algebraic.

=)

=



522 Giismos o Thew or Pre-Cotuzoe Manesuance |

45. Eliminate x, y from the equations: §
@R +xy=a ) (b-x)c-y)=a*
Bexy=p (c-xNa-y)=b
2+yp=c @-x)b-y)=c*
@+t @3-y =px-qy
x-a y-a b
o, ey ar
x-b y-b b
2+y=2a+b) 2+y=1
(@) 42 +y)=ax+by (/)ax2+by2=ax+by=;iy—y=c
2 -y =ax-by
=&
(Wx+y=a
2+ =
24y=3

46. Consider the collection of all three-element subsets drawn from the set 1,2, 3
<y 300}. Determine the number of those subsets for which the sum of the elements
is a multiple of 3.

47. Three circles have a point O and lie inside a given triangle.
[Each circle touches a pair of sides of the triangle. Prove that the incentre and the
circumcentre of the triangle and the common point O are collinear.

48. Find all possible values of x, y, z such that AA” = / where

W2 23 x
A=z <23 y|-
) V3 z
s 1 3 2
49.1f ° A=|0 1 -1
’ 0 -1 -2
Calculate AJ — A and solve IAf - A I= 0 for A. Check that A® — 44 + 3/ is the zero
50. Solve for x:
1 1 1 1
1 1-x 1 1
1 1 2-x 1
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51. Without expanding, Prove that
l+a 1 1 1
I 1+p 1

(a) 1 I 1+c¢ =abcd(l+l¢l+l+l)
a

®| 2 2zx-y? 2

© Oy @ oy i
Uy Gy @y

3 O3 Oy
where A,; is the cofactor of

52. Consider the system

ax+by+cz=0
ax+by+cz=0
ax+by+cyz=0
where, the coefficients satisfy:
(i) ay, by, cyare all > 0
(if) The other coefficients are all <0 and
(iif) in each equation the sum of the coefficients is positive.
Prove that the system has only one solution, viz, x=0=y=2.

53. On a given circle, six points A, B, C, D, E and F are chosen at random
independently and uniformly with respect to arc length. Determine the probability
that the two triangles ABC and DEF are disjoint, i.e., have no common points.

54. A teacher distributes 7 books to 7 children (each child one book). On the next
day she collects the books back & redistributes them in such a way that every
child gets a new book. How many options are available for the teacher to do
this?

§5. If 8 is expressed in radians, prove that

. cos(sin 8) > sin (cos 6).

56. Find the number of permutations (a;, a3, a3, as, as, ag) of (1, 2, 3, 4, 5, 6) such
that for any k, 1 Sk <5, (ay, @y, ... @) is not a permutation of 1,2 ..., k. (e.g.) @
# 1, (a), ay) is not a permutation of (1, 2) etc.

57. Let Ay, A, ... A, be a regular polygon of  sides. If

1 1 1
————
AA,  AA AA
(B lace the numbers 1,2, 3, .., n2on the
i ways in which one can p! nam 2 & e B O

. :;n;:;:su‘:}b:; :fx nycbasbmrd. one on each, such that the numbers in each

row and column are in A.P.

0 in the matrix (c).
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59, Eliminate x, . 2 from the equations:
z n

(d)E(y-tz—x)=%(l+l—])=:(l"’]-l)-
(ax+by+c0=0.

(B)x+y+z=8a (© x+y-1=a
B+y+2=b 2+p-2=F
S+p+d=c fry-2=¢2

xpz=d =4

@r-ap=y-ba=7-cy
=|Eu1¢y3*z’)(&12)=(0.0.0)

XY T
(@P+2-xy+d=a » ;4—-:-4;:“
: 1P E
2+ —yz+0)=b :+;¢y=b
2+y-dx+y)=c \
416 S0 | R INA
Py +d-Inz=d (f*;)(?’;)[!’!)—(

(x)x.;znﬁemmsofr’—ar’+h-c=0-ﬂn:hodrﬂdcsdan;ﬁp

(h)y+z=a(l -y2)

z+x=HK1-zx)
x+y=dl-xy)
x+y+z-xz=dl-xy-yz-x)
) PR Z.=
@07ty=e O Ty=e
X2 Z X
2+l =-==p
2z b x z
Xgpd " A
R g, =

64. Let p(x) = x* + ax + b be a quadratic polynomial in which a and b are intcgens.
Given any integer n, show that there is an integer M such that
pln)p(n +1) = p(M).
61. Letf be abijective (i.e., one-onc, onto) function from A = {1,2.3. .om) 0 ttself.
Show that there is a positive integer M > | such that

UefoSoa ) D =D

foreachic A.

62. Show is anatural b ch that n! when writien i decimal notaos
(ie., in base 10) ends exactly in 1993 zeros.

63. Let fix) be a polynomial in x with integer cocfficicnts and supposc that for five
distinct integers a,, a;, a3, dy, as we have

525
fa) = o) = fag) = flay =
M—hhuﬂ-hbﬂ:’”;-z’.
64. Determinc all functions £ - {0.1) —» R such that

1) _21-29
k“’('”]‘ x-x)°
65. Determine

mi anpa’-s(nymm-puu,fw-uw-ﬁ-

£+
66. Let a b. c. d be any four real numbers not all © Prove oot
prnde e equal 0 zero. that the
f=tra’sbdscxsd
cannot all be real.
67. Let A dencie a subset of
(1. 10,21, 31, 541,551}
md:mﬁ-mmdnd’.hﬂqnmhmh.i_-
have more than 28 clemeats.
68. Leta. b. ¢ denote the sides of a wiangle. Show that the quantity
a b (2
—_——
b+c c+a a+b
must be between the imuts g-azc-u_n,w-* emit?
6. Letm,. my. m;. .. m, be a rearrangement of the sumbers 1. 2. .. n. Suppose that
n is 0dd. Prove that the prodect
(m; - 1) (my-2) _ (m,-m)
s an cven micper.

70. Prove that the product of four consecative samral sumbers cannot be a perfect
cube

71. 1 g and b are positive real numbers and @ + b = |, prove that

{ AF |}= 1
. — b+—! 212,
\*a) ’( 3 2
uﬁmmmamdh-ﬂd@-,_-.:%qunﬁ._
ara,(erbpubaqmldﬁmdpa-m-m
73. Evalustc in “dosed” form.

ifn) . fw 1 fed
{a)1 \]/-- LI]’ +n [.)
(a)
1

b)) 1722 o"s‘r.\'-...o-’(n'l) ")
)7 2) L)

(€IfS={1,2. . ajamdlSrsa
n Z (man A) (-)‘Z’ (max A)
e o=
(i) X (min AP @ I maa?
ACS

iy s
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74. If n people arc present in a room, what is the probability that no two of them

mmmymmemdaydlheymﬂwll'emadnbemuh
1

this probability is less than 5?

75. Let f, denote the number of ways of tossing a coin 7 times such that successive
me.smmu.uking[o= landf; =2,

So=fos * o2 n22

Find the probability (in terms of f,) that successive heads never appear when 3
coin is tossed n times, assuming that all possible outcomes of the n tosses are
equally likely. What is the answer if n = 87 .

76. A round-robin tournment is played amongst n-players. Each pair of players plays
one game that culminates in a win for one player. A win earns 1 point; a loss ()
points. At the ination of the playerihasa, points. (0<a,Sn-1).
Suppose that b = (b, by, ..., b,) is a given n-tuple of nonnegative integers with
by$b;<...<b,. Prove that the n-tuple b could have arisen from a round-robin
tournament as the set of final scores iff

] (i) }:f_,b,z(;)formhk,lsks;:.

) Eb = (’2'

77. Let p be an interior point of a AABC. Show that at least one of the angles PAB,
PBC, PCA is less than or equal to 30°.

78. The incircle of AABC touches BC at p. The line through p parallel to /A meets
the incircle again at Q. The tangent to the incircle at Q meets AB, AC at C'. B’
respectively. Prove that AAB’C” is similar to AABC.

79. A permutation ay, @, ... a,0f 1,2, ..., n is said 10 be indecomposable if n is the
least positive integer j for which

{ay, @y, ...q)} = {1,2,...j}
Let fin) be the number of indecomposable permutations of 1, 2, ..., n. Find a
recurrence relation for fin).

80. Show that the product of five consecutive positive integers is never a perfect
square.

81. The incircle of AABC touches BC, CA at D, E respectively. Let Bl meet DE a1 G.
Show that AG is perpendicular to BG.

82. Let ABC be a triangle in plane . Find the set of all points p (distinct from A, B,
C) in the plane X such that the circumcircle of the triangles ABP, BCP, CAP have
the same radius.

83. Prove that, if r be the inradius of AABC, the sum of the distances from a point p
inside the triangle is at least 6r.

84. Prove the following inequalities for a AABC:

(@) 3(bc + ca +ab) S (a + b + c)* <4(bc + ca + ab)
®) @+ +A)2 3—3:(:’ +%]

(c) 8(s - a) (s - b) (s - ¢) S abc

(d)abca‘(A-a)wr(A_,,)",u

“)W"“’Z‘&t-b)(,
2o L. 1
mabcsa;*pfﬂ?

—_
c+a

527

as ;*
~Ns~q)

a
b+c

=
a+p<2

3
®3°
(h)0<sinA+sinBesincs3 5
(t)sinA+$inB+dnC2n':22A#
@,z%d6kr.

;s_h'ovelhalalﬁmg]cistﬁham i obtuse-angled accordin,

J~E¢H—8R’Bmﬁﬁnwwnamu e
“Ua2¢b1>5(-’inaAABC.sb'hcism=-.nnmside

87. Let M be any point in the plane of a AABC. mmm

ook ofa - Find the of MA? + MB? +

$in 2B + 5in 2¢

that SO 2103 .

89. If a polygon isinsaibedmudrdendaseemd
drawing tangents to the circle at the vert;

any line mngmlmdzdmumaibedmkisuqnlnnﬁmgsmetﬁum
91. For an acute angled triangle ABC prove that

<

2R ;
TR 87 Q2R +r)

with the usual notation.
92. In a AABC prove that
B—CJ

Zcos (——

3 SL(XﬁnAozng].

\ V3
93.1fa, b>0and a + b =1, show that
(1 +(Ua* )P + (11 + ()2 2 6.

94. In a triangle ABC, angle A is twice angle B. Show that a* = b(b + ¢). Prove the
converse.

95. The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let T be
the circumcentre of AAPB and H be the orthocentre of ACPD. Show that H, A T
are collinear.

96. Prove that if the Euler line of a triangle passes through a vertex then the triangle
should either be a right angled triangle or on isosceles triangle or both.

97. If the Euler line of AABC is paralle! to BC, Show that tan B tan C = 3.
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» i orthocentre of the triangle formed
8. ix diffreat points a1 P ;‘::.gnoid of the triangle formed by the
o= :m?u:scgnxnt Prove that, when this is done for all possible
ﬁ'ﬁ'ﬁﬂ‘;ﬁ’n& chosen, the 20 line segments so formed are concurrent,
99. Prove that a straight line dividing me perimacrand the area, of the triangle in
lll:samcmimpcsvcsumghmemoenm. )
100. Let P be the Fermat point of AABC. Prove that l.hc Euler lines of As PAB, PBC,
Pammmtmdmcpoimofmumnce is G .
101. Prove that the three points on the circle whose pedal lines pass through the nine-
s mm.w?ﬂ-mr:‘:ﬂzm with centres X, Y respectively in the
o pLIam:b‘:Y:t tangents at A 0 the two circles meet the circles again az_ B. C. Let
point P be located so that PXAY is a parallelogram. Show that P is also the
circumcentre of AABC.
103. Triangle ABC is scalene with angle A having a measure greater than 90 degrees.
Determine the set of points D that lie on the extended line BC, for which 1 AD =

JTBDT.ICD! where | XY | denotes the distance between X and Y.

104. Let ABC be an acute angled triangle. For any point p lying within this triangle,
let D, E, F denote the feet of the Lrs from P onto the sides BC, CA, AB resply.
Determine the set of all possible positions of the point P for which the ADEF is
isosceles. For which position of P will ADEF be equilateral?

105. Given an angle QBP and a point L outside the angle, but in the same plane, show
how to construct a straight line through L meeting BQin A and BP in C such that
AABC has a given perimeter.

106. Prove that the sum of the squares of the distances from any point on a circle to
the vertices of a regular polygon of n sides incircled in the circle is constant and
equals 2nR%.

107. Prove that the sum of the squares of all the connectors of the vertices of a regular

polygon of n sides inscribed in a circle n?R%.

108. In a AABC the incircle I touches the sides BC, CA, ABat D, E, F resply. Let p be
any point within I and let the segments AP, BP. CP meet I at X, ¥, Z resply.
Prove that DX, EY, FZ are concurrent.

109. Eliminate (x, y, z) from the equations:

(@) ad +by* +c2=0
ayz+bx + cxy=0
P+y+2+hyz=0
®B)@+x-y)x+y-2)=ayz
(+y-2)(y+z-x)=bx
O+z-x)(z+x-y)=cxy
©P+yz+d=at+ux+l=h
Paxy+y=c xy+yz+2=0.

24+ b =2b
(a, ¢, y, 2 b are all unequal)
(e) ax® + by + c2*
=ax+by+cz=xy+)yz+ =0
NP+ +P=x+y+z=1

@ I+my+nz=mx+ny+lz

(d) @ + 2% = 2hax - L Y N
PyP =2y (h);:‘r_;:v+mz—h(.:¢_r+:)—l
Pad=Dy il

W-)=xy R+ P+ =d"

ANSWERS TO SELECTED QUESTIONS
IN THE EXERCISES AND PROBLEMS

1. (a) 3. (5)9. (c) 333. (d) 6.

2. (a) 270 (B)yn(n+1) () 3702.

6. (Nx=9+22k, y=-11-21k
(if) x=21-40k, y=32-6lk.
(i) x=21 -4k, y=21-5k
(iv) There exist solutions when x = ..

y=5+3kz=-5-2.

10. 4 13. a = b =any integer. 4. 9.

15.a=+10,b=%100;a=%20,b =+ 50;
a=%100.b=%10;a=+50,b=+20.
17. 1 if a is even and 2 if a is odd

.=6,-1,4,9 ... In particular, when x = 4,

2 (p+ D2, (p- D)2,

EXERCISE 2.3. (p. 33)

2.:21931055 312 4.16
6. 249 7. {1} 8. 960
13. {2520 | n is an odd integer).

LEMS (Chapter 2) (p. 34)

16. (i) (7125) 10" forn 20

(if) There is no number which reduces by 58 when its leading digit is deleted.
18. 198 2. No integral solutions.
21. Solution set: {x.10% | x = 10125, 2025, 30375, 405, 50625, 6075, 70875: k 2 0}.

(p. 183)
1.1,5. 2.6,-3. 432.-48.  6.- 343
7. J5/N7 N/ 8. V3.V32. 9.-T.16
10.4,-2 12. 13, -4.

529
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i ocentre of the triangle foy
gl c::l::‘ OT:l“cwo?: of the triangle formed b;"m':
ine segment. Prove that, when this is done for all possible
ix points :;';:)sen, the 20 line segments SO formed are concurrent,
triads of the s,l:,,p:;: Jine dividing the perimeter and the area, of the triangle in
99, Prove that

h the incentre.
the same ratio, passes I"““’“?AABC- Prove that the Euler lines of As PAB, PBC,

Fermat point of :

100. l;’é:; ;ho:amenl m the point of concurrence IS G ‘ '

i ircle whose pedal lines pass through the nine.

101. Prove that the three points on the e B
point centre form an equilateral triangle- X, Yrespectively i

ints of two circles with centres X, ¥ respectively in the

102. Let A be one of the :w?;ow the two circles meet the circles again at B, C. Let
&ﬁ'mm; hat PXAY is a parallclogram. Show that P'is also the
circumcentre of AABC.

103. Triangle ABC is scalene with
Determine the set of points D
m where | XY | denotes the distance between XandY.

triangle. For any point p lying within this triangle,

il 5335(5 :‘edae:;u('f;?eg:?ﬂmefn from P onto the sides BC: CA, AB resply.
Determine the set of all possible positions of the point P for which the ADEF is
jsosceles. For which position of P will ADEF be equilateral?

105, Given an angle QBP and a point L outside the angle, but in the same plane, show
how to construct a straight line through L meeting BQ in A and BP in C such that
AABC has a given perimeter.

106. Prove that the sum of the squares of the distances from any point on a circle to
the vertices of a regular polygon of n sides incircled in the circle is constant and
equals 2nR?.

107. Prove that the sum of the squares of all the connectors of the vertices of a regular
polygon of n sides inscribed in a circle n*R2.

108. In a AABC the incircle £ touches the sides BC, CA, ABat D, E, F resply. Let p be
any point within I and let the segments AP, BP, CP meet L at X, Y. Zresply.
Prove that DX, EY, FZ are concurrent.

109. Eliminate (x, , 2) from the equations:
(a) ax® + by? + 22 =0

ayz+ b + cxy=0
S+ +hyz=0 (€) ax* + by? + ¢*

B (z+x-y)(x+y-2)=ay =ax ¥ by +cz=xybyzh =0
x+y-2)(y+z-x)=bx DR4P+Rextyrz=il
O+z-x)@+x-y)=cxy

©Y+yz+=a;2+ux+x=b
2rxy+y=c xy+yz+m=0.

(d) @+ x* = 2hax
2 +y =2y
Y+2=2y

ix different points are given
" ther three points by !

angle A having a measure greater than 90 degrees.
that lie on the extended line BC, for which | AD |=

2+ b =2h

(a, ¢, . z b are all unequal)

z-r)

@) Lx+my+nz=mx+ny+lz
=nx+ly+mz=h(3 +y* +2) =1

ANSWERS TO SELECTED QUESTIONS
IN THE EXERCISES AND PROBLEMS

1. (a) 3. (b)9. () 333. (d) 6.
2.(@)270  (b)n(n+1)  (c)3702.
6. () x=9+ 22k, 11 -21k.

(if) x = 21 — 40k, 32-61k

(iii) x=21 -4k, y=21-5k.

(iv) There exist solutions when x=... -6, 1,4,9 ..... In particular, when x = 4
y=5+3kz=-5-2k ' '
10. 4 13. a = b = any integer. 14. 9.

15.a=%10,b=%100;a=%20,b =+ 50;
a=+100,b=%10;a=%50,b=+20.
17. 1 ifais even and 2 if a is odd.

21 (p+ D2, (p=- 2.

EXERCISE 2.3. (p. 33)

2.21%31956 L 416
6.249 7.{1} 8. 960
13. {252n 1 n is an odd integer}.

LEMS (Chapter 2) (p. 34)

16. (i) (7125) 10" forn 20

(i) There is no number which reduces by 58 when its leading digit is deleted.
18. 198 2. No integral solutions.
21. Solution set: {x.10¢ | x = 10125, 2025, 30375, 405, 50625, 6075, 70875: k 2 0}.

EXERCISE 5.2. (p. 183)

1L1,5/3 2. 653 132, -43. 6.—32,-43
7. 5/¥7.7/45 8. 3,32 %-T16
10.4,-2 12.13,- 4.

529
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EXERCISI p. 187)

1. (@) V4)(=1%i 7). ©-1%i3.

(d) (1/4) (-1 £ J5). (&)-3% 3.

) Va)(=5£i 7). ®)-2,-1/4.

() 12{3) (-2 J10). () 1,-6.
2.(a)a2-81/4 (b)lal 24

(c)as2 (das-8ora20.

(e) For all real numbersa. (f) lal <2

4 1-m?

3.%39/- . m, o
5.1,-1/3.

L@ a+B=-9,08=8  (0)-3,4/3.

(e)-7/6,~ 172. (8)6,-72.
=32, 172. )
2. o?+p? o/B + Pl 2B + af?
(@)-112 -19/9 918
(b) 464 30 16
(©-135432 16 -943n
(d) 67 /5/64 -43124 -3 5B
(e) - 3024 -6 432
(g)-43 -29/14 14
3.(b) -32x +4. (e) 2~ (1.8)x+0.72.
(8) ¥-4dx+13. () R+2.
4.a=-2,c=-4. 5. The other rootis |, b= -8

6.x2-2x-2. 7.5 +ac(a+c)-3abc=0.
x=30, the roots are 4 + i/14 .
(L Q%+ g7~ p(Q + ) - 290 + qP* + Qp*.

10. X% + (31/36)x - (449/216).

LG 2 +1), (2 -1). @1, i
() 2 is a double root. (h) 0.
DEV5.£42. ) (112) (5 £ y29), (112) 3 £ JT3).
2.6,3 4.3 5.6,3

531
6.4,6,-6,-4
8.8, -
10.k21ork<-7/9 113 9l 9SldcsmI0|nd8nmu
ora= )
1. All reals, 2.x>3orx<,

SRRl 3 V2D orxs (12 G4 g7, $0-48 <x<64448.

7_|_,/ﬁ<x<—1+,/“ 8. All reals,
10.x<8- 73,8~ 57 <x<gy
x=20r-2<x<_ |,
13.-4<x<12o0r3sxg5. 15.-38<xg 121

16.1xl > 3. <

l7.x<»lor0<x<lfz
]8..r<—ﬁor0<x<lurﬁ<x<2 e
19.x<-2o0r-1g5x<], 20.x<- N2orx21n
21.-3- /5 <x<- dor-2<x<0,

9-~ISXSSIJ.
Jﬁorx28+‘/7—3,

12.-4<xcy orx>7,

PROBLEMS (Ch,

apter 5), (p. 199)

9.(w+a) @ is real where u* = g2 _ p,

10. u and v are real multiples of q - ¢ where u = \/a -4b,v= Jc -4d.

11. Any polynomial ax® + bx + ¢, where ibla and c/a are real.

15.x=5,10.

2.1°43' 8" 3. (a) (m9). () (n/18).
4.3.86.700 km. nearly,

EXERCISE 6.2. (p. 205)
2.(a) {<3"+ Ug-'"EZ}. b)(nm:neZ).

(c) {(lel)g:nel}, ) (nm:neZ}.
17.5i00=/I_K?, tan 9=(ﬁ)/lf.

sec 0 = 1/K, cosec 6 = — V(ﬁ_—;?)

cot 9= K/(W)

18.9/4.
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y LEXERCISE o7, .23
==1/f3. -
L@t @ () cos* A. ‘ anR=ly Bix=fe-di
@1 @3- 24, x=3/2V). 25.x=0,172.

r@-1n @12 © ufp. @2
® 25 [ EXERCISE 63, .23
. w i The values for 8, in Questions I - 12 are as follows.
. (2n) 180° - 104° 18’ 39”, ne Z

1
x12 s xZO}
ud neZ
2. (@ fw=¥x- ®Of=1 , x<0 3. knin: 2kmWntmn, ke Z.
(o) Not invertible. (d) Not invertible. 4. 2n+ )6, ne Z.
(e)ﬂx)=ﬂn" x () Not invertible. 5. nm.antn/3, nx180°+35°15, ne Z
@f'=rf 6.n2, neZ
4. @R~ (0)- OYR=1-1,0.1}- oL
©F3.31 @ o~V G LEE I Tyt neZ
T n
(z),lfx(h&(z"*l)")~ (HR-{nnine Z). 8. (4n+I)E.(-tm»l)i—a.nel.whema=33°41’24".
10. (@) n™ (b) n Y(n—m)!
—%
(©2m-2forn=2; A
3m_32m4+3forn=3. ¢ nm T
& 10. 3 + 12 "€ Z
[ XERCISE 65, p.223) d
1l nmsone Z, where 0 =73° 13" 17",
4-p’-¢° ¢ . nm 2n
23, p’+q: 7 ]1,T.2nﬂ2’.‘—.n€ Z
m»ﬁ[s-—ﬁ 13. (d-a) (d-c) S b
28. O T
o8 4 |4_B:2:m*§.bm¢§.nsz
s'm27°.= V5+45 —J3—\/§ 16. cos 8 =cot A +cot B+ cot C.
- 4 17. Division by cos 8 is not allowed if cos 8 = 0.
2 i — 19. (@)= J2. 42 (b)-2,2(c)-3,7
sine cosine tangent | cotangent secant cosecant | 1 —
- — () = [a+c)-a=ci +b* | (a+0)+y@-c) +b*|.
G- | e ‘ e
- 6+ - = =
3 —_— 2- 2 -2 6 2 [ 3 3
2 2 B +3 V6 -+ ,fh/ (€)= {1 +sin” a : {1+sin” a.
n n
75° ’/6:‘/2_ _Jé;ﬁ 2443 | 2-43 | 6+42 ‘ ﬁ)ﬁj 20, x=nr+ . y=nn+ coneZ
| ¥ 3

EXERCISE 6.9B. (p. 246)

mn "
—=LBC".

3. (m-n)AD*=m-AC*—n-AB*+
(m=—n)
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5.h,=48/13, hy=12, h.=165.

15.50 m and 21 m
2 2
1.60) MT‘”'% (inuﬂms (i) "‘%m%‘
20.() A=60°42, B=42°39, Cc=176"39
(i) B=64°6, C=39°54, a=1165
@) C=T7°, b=37.36, c=59.13
(M (@C=63°2T,  A=64°3%, a=4240;
BC=1163%, A=11°27, a=9321.
) B=35°10, C=104°50, . - c=1684.
(vi) No solution exists
(vii) C = 90°, A=15°, i=2-5
(vii) B=37°48, c=12°12, c=2759.
- (ix) No solution exists
(@) A=21°47, B=38°13, C=120°.

EXERCISE 6.10. (p. 261)

4a(a+b)sin® a+b’
2Aa+b)cosa
3.1f a =1 =B, height of tower = (a tan @)/ /3 . Otherwise it is equal to

ax

[Pz+q1+'z_J2pzqz+2pz,z+2q:,z_p4_q4f':

2p* +q‘+r‘—p2q2 _p:rz —qer)
where p=cot @, g=cot B and r=cot y.

LE+P=3+d.

Jx+y) P+ (x—-yP=2.
5.(A2-12=27A%sinf a - cos?a.
7@+ - 12=4[(a-1) + ).

9.(B? + 1 +2a(b* + 1) (a + b) = 4(a + b)>.
1.2+ - 1P =(y+ 1P+ 2%
1B.(x+ )5+ (x-y)*5=2.

15.m* +mcosa=2.

17.xy=(y—x) tan .

2 2
s x=1,1
P 4 7 4

20‘213+z=3x(l¢.y).

M S 20, A 25

12.x=2kxor(2k-(1/2)),_'ke

Z,if nis odg
13. x=(2k + )w/4, (2% + /6, k e Z’”wdd”“h“e AR
14. [/4, Tr/4)
25;:25 %-24,%-2B,x_)¢.
Alm: aAoosA.bleosB.cAcnsC'
: ?AA’OOsAeosBcosC- '
Circumradius : %RL
Inradius :

R“*COSAoosBcNQ

Wh’“’}‘=”+cosA+cosB‘
27.a‘+b‘+c‘-z,,zbz_7azcz_;,’;?§°°“°°“’wsc

ekt 2,00

3y=032)x y=(1/6)x 5.y=0

9. (c2—€1)/(my - my) Iy+2c=7

18. (D x-3y-8=0; (if) 3x~ 16y-30=0
20. o= 15° or 75°

1322432+ 2x-20y +17=0
2. 25¢ + 2552 ~ 100x - 150y + 156 = 0
0.

9. 2+

1.2+ +3x+3y=0

PROBLEMS (Chapter 7). (p. 314)

. a(l +cosa)+p=0.orall -cosa) +p=0

33. 32 square units.

43. A 22 - y(@® - B + abc) - 2bexy - acx + aye =0,
where (a,0)isAand (b, ¢)is B

EXERCISE 8.1. (p. 327)
Lx=3y=-2 2. No solution.
3ix + y, y arbitrary 4.x=5y=-1
5.x=1+y,z=2-2y,yarbitrary.
6. x=—(11/73)+(133)w+(23)u,y=5-2w-u,
2= (7/3) - (8/3)w — (V3)u, w and u being arbitrary.
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1.;:2.y=—l,l="|
8.x=139,y=53,2=-5
9.x=2-y,z=-1,yarbitrary

10.x=2,y=— 1 -2 zarbitrary
M.x=4,y=3.2=5

. B.x=-ly=-lz=-2
12. No solution. : 3
14.x=-3z+2w—3-y=5‘“’v”'mdzmg“bl :

ls.x=_w+l4.y=z+4‘wandzarbimry-
16.x= (- 6/4)z + (14/4), y = (6/4)z = (10/4).
1T.x=-2,y=3,2=32,w=-12

xR 52, 0,350

117 (b)-45 ©2
2.4y=-5 Ap=10,  Ap=-5
An=-1, Ap=2  An=-1

An=4,  Ap=-8 An=4

detA=0

3.Ap=16, Ap=-64, A;=-64
Ag=48, detA=-192
4.(a-b)(@-c)(@a-d)(b-c) (b-d) (c-d)

3:V33

5.A=0, g
1.(a)x=0,y=5/9,z=-59,w=-1
(b) No solution.
2.If k* # 1, the system has one solution.
If k= 1, it has infinitely many solutions.

If k= 1, it has no solution.
7. cos? o+ cos? B+ cos?y=1
9.=0

1.2160; 720; 144 37 NxP 5520
20) 5
7 5 2 9.4536; 2296; 120
n+k
15, 17.(n-1)! 19. 5%
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EXERCISE 9.3. (p. 387)

3.(a) Zero (b) No term independent of x.

(c)-672x 3¢
5.3

PROBLEMS (Chapter 9). (p. 387)

n(n—1)
1= 2.(a) 240 (b) 120
3.210_25 & n(n+l)‘..(n+r—l);(ﬂJ

r! r

13.11% 5! 6! 15.9(1 +9; + 9 + .4+ %)

< n
16. g P(m.k)(k) where P(m, k) is the number of ordered partitions of m into k

parts.

XE

1.x5 4+ 8% + 9% + 1022 + 12x + 13;
8104+ 9x% 4+ 1247 + 8426 + 90x° + 72¢* + 201> + 40x% + 108x + 36
30+ 4 A+ 20210 |
5T+ B+ VT - 62+ 12x + 4;
a7+ 2720 + (247 - 48)x° + 16x* + 4723 - 2422 + 8x
778 + (172)x* + 3x* + 3x%/4 + 35/6
D05 2liwi d vy DBy S ey B0 B2, B
2 4 2 6 4 2 6 4 [
9.0 -+ -2+ 2051
1.2 225 =38+ (2-23) -2
13100 + 1027 + 3x + 4;
1030 + 1925 + 31x* + 410 + 23x% + 6x + 2

¢ 10.1. (p. 392)

. (p. 397)

In the answers to Questions 1 and 2 below, the first mentioned expression is g(x) and
the second mentioned is r(x).
LS +x- 10+ 2 -x+2
(d) x5 +2V6 x4 4218 3 4212 32 4 413 x 4 256,
(02 42 +6x; 11x+9
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(Wyx-T:9x+1
() _2002+7x+13;-6x+6
(r)x’+2:1+51*10:21x+21
2. (@) 282 - 11x + 15,0
(¢) 52 -27x; 18
(€) 20+ 28 +4x —x"—Zﬁ-h‘-Sx’—le’—Zﬂx—‘%O;—%
@ +20+3 14
@) 2-3x+18 112
() 42 #4538 +4x+2
(m P -2 -6x+12-15
()P +4x - 14x+9; - 15x-2
3. x-3°
6. 10+ 104° + 45u® + 12047 + 2104
+ 2525 + 2106 + 120u’ + 45u* + 10u, where u =x = 1
8.4t + 3 +9u?+27u+ 17 where u =x-3
10, {45 + 615 & 150+ 290° + 4212 + 65u + 58)
X5+ Sttt + 10 + 10u2 — 20) where u = x = 1

1. ‘No’ Answers: (a), (b), (d), (1), (m).
The remaining answers are ‘yes'.

EXERCISE 10.4. (p. 406)

i 13 l: e;ch of the answers below, the first — mentioned is the ged and the second is
the icm.
@@+ (x=D; (F+2) x+9 (- 1) (¥ +2)

1 16 1
o222 e e
3
(C)(X-B)(X—ﬁ):(‘“f] -9 (2-2)
1
Ax+—|.
(d)(x+l)( x+4),

- 12x2+47x-6o)x(x’-ix-le(,z _E,_i)
OFe st il 9" 9
O+ ) 2+ 1) (=2 x(x+ J3) (2 + 1) (x=2)?

1
(g)(x+3)(x*ﬁ];(x+l)(x+3) (1+LJ2
V3

1
) 4(”—} (1 A,
xe (T E LR T x @2 axe 3 s )

2. (a) (x+ D +3) (x + DeE+2)
(b) (R+1)(+1); (= 1)
(©) (x+ D03 +2); (e + DEE = x+1)
(d) (x+ 1P (x=1); (x+ 12 (x+2)

L) = (x’ +2x+2} mx) = (x2 —l)ul}
4 2 4 2

11. 655 — 1564 + 102

'S

PROBLEMS (Chapter 11). (p. 433)

15. x= 34 y=122=14 17.2V2
18. The expression has constant value equal to 2.

19. No 20. (a+ k)"
1. 582 2. 1806
3.312 7. 66, 40, 02,144,

PROBLEMS (Chapter 12). (p. 454)

100-4.9"+6.8"-47"+6"
120.
D,z or Dy, 1y according as n is even or odd.

Cridpions e .00
M HEHHEHHEEINY
(%)

5. 0.665 6. 1/4 7.0 8. No

9o

o

(b) 1+
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9. 21/100
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1. 1/6, 346, 9/6, 2716, 81/6
3. All constant sequences.
4.1,2.4,8,16,32,64, 128,
5.4,12,36
6.3,-6,12,-24
7.-5,-13,-21,-29
8.-6,-3,0,3,...42
.32

et 52 0.0

2.275 3.0
4.20,18,16, 14, ...~ 18
6.n=17u,=-24

7.9119700 8.38
10. 4905 12.55
13.2,4,6,8,...20 14.8825 .

1.5,15,45, ..., 3645
5.3,7,110r12,7,2

6.30r-3
n(n+1)(2n+13) n+l " n
. 6 ‘n+2 “2n+1
n(n+3) 8n+9 _ o' +2n+1
5 HntD)(n+2) 6 T22n+3) 15 3@n+1)2n+3)
S(n-4) 5
18- 24(n+2) 23.2926 27. Jyn+1-1
EXERCISE 15.6. (p. 504)
2™y
Ln(n-1)2%2 3 +2"
n+l
$.n-2% IZM
© 2
2"-1 n(n+1)
16~ 17,755 (60’ +9n +n 1)

-

-

4

»

(n=Dn(n+1)Bn+2)
24

EXERCISE

. cos 14a + i sin 14a

3

1+sin@+cos @ g
. modulus = —dhcoso B
amplitude = /4

(@) Si0(n02) (sm("_t')e)
sin(6/2) 2

(b)2+_l_sinn900s(n+l)9
22 sin 6

EXERCISE 16.2. (p. 515)

2kn
.(a) 2" cis (% + _) k=0,1,..5

6
(b)Z"“cis(L*E) £=0,1,2
12 3 e
6 cos® @ sin 8 — 20 cos® 8 sin® 8 + 6 cos B sin’ O

cos’ @ — 10 cos® 8 sin® 8 + 5 cos B sin* 6

PROBLEMS (Chapter 16). (p. 516)

. (a) tan(27 ) - tan 8
16 -8 - 12X +4x +1=0

a+b+c
x=y=z=—

MISCELLANEOUS PROBLEMS (P. 518)

(a) (bc + ca + ab) (bc + ca+ ab-a* - b - )
(b) (a* + b* 4 ¢* —~ bc - ca - ab)
% [(a® + b + ¢ - ab - bc - ca) (ab + bc + ca)?
- 2(a? - be) (b? - ca) (2 - ab))

Aa)a* +b* = (@ + b))

(b) (be + cd + ab) (a* + b* + ¢ —ab - bc - ca) =0
(c) d® + b? = 6ab

d)(p+ gy +(p-q*=2

(e) (a+ by + (a- by =4
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ﬂéuob—n’-b*‘—“"'“'v"'_»“-o

w.lsc’sk-u‘sl’-t’
ﬁ)-’ol"=u‘

B P PrS=d@rasPcrarc@sh

_3ab+2c-bd=0
:‘;_’;!,k',("-W+SI‘-M#M(t‘—W=0
D+ B+ - 2abc— =0
e)-’»‘u-‘-wﬁi
Pab=c+l
wh’—ﬂh’+ﬂ’=ﬂl’—u* 27
@24 —be-ca-ab)=(1 —P)@a+b+c—ab)
mioPOE-dr-lﬂl
wm’éo:’n’oc’b’-“-b‘-?)oi&’:’:O
m(.).ub’u-‘=.?o+n+lr‘(c +a)+Ha+b)
(b)‘c=(¢40+t-4)’
@A+ B+ C+3(BC + CA+AB) =0 where
A=£—k.3=b’—¢.c=tz-d
@@+ ) =04 - 47+ 2)ab
(e)(c&b+c)’-4(boc)(c¢a)(n4b)+5dx=0
1 1
(a—b)r+(a—-cibg (b—c)ap+(b—-a)r

(]

I 1
" (C—dk#(t-bw’kw*’cﬂlp?m
@) U+m+nP =34
(k) (B2 — ca)? (C — abY + (3 - @b} (@ — be) + (& - be) (B - ca)?
=da + b + & - 3abe)

INDEX

(ofmiulwuds&nmwithmemmben

of their firsUmajor appearance/s)
A C
A'S A Theorem, 43 Cartesian Geometry, 267
AP.488 Cauchy-Schwarz Inequality, 429
Absolute Value, 10 Centres of Similitude, 96
Adjacent Angles, 40 Centroid, 59
Alternate Angles, 50 Ceva's Theorem, 77
AM-GM Incquality, 425 Cevian, 79
Analytical Geometry, 267 Chinese Remainder Theorem, 480
Angle of Depression, 258 Circumcentre, 58
Angle of Elevation, 258 Cofactor, 332
Apollonius's Theorem, 246 Co-domain, 209

Argand Diagram, 9

Argument of a Complex Number, 10
Arithmetic Mean, 419

Arithmetic Progression, 66
Aryabhatta, 202

Augmented Matrix, 351

Bhaskara, 202

Bijective, 210

Binomial Coefficients, 383
Binomial Theorem, 382
Brahmagupta, 202
Brahmagupta's Theorem, 257
Butterfly Theorem, 169

Coaxial System, 307
Collinear Points, 74
Common Difference, 476
Common Ratio, 468
Complete Graph, 447
Complex Number, 8
Composite Function, 212
Concentric Circles, 86
Concyclic Points, 36
Congruence, 36
Congruent Triangles, 42
Constant Function, 216

. Convex Polygon, 53
Convex Quadrilateral, 54
Coprime, 23
Corresponding Angles, 38
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